LQD is Definable

Mamuka JIBLADZE, Thomas STREICHER

June 2000

Abstract

The aim of these notes is to show that for every bounded geometric morphism $\Delta \dashv \Gamma : \mathcal{E} \to \mathcal{S}$ between toposes the collection of maps in \mathcal{E} which are lqd, i.e. locally are quotients of discrete maps, do form a definable subfibration of the fundamental fibration $P_{\mathcal{E}} = \partial_1 : \mathcal{E}^2 \to \mathcal{E}$ of \mathcal{E} .

This result will have in particular the consequence that for every object X in \mathcal{E} there exists a greatest subobject $m_X : \mathcal{P}_{\mathcal{S}}(X) \to \mathcal{P}(X)$ such that $\pi \circ (m_X \times X)^* \ni_X$ is lqd.

1 Basic Facts and Definitions

Let $\Delta \dashv \Gamma : \mathcal{E} \to \mathcal{S}$ be a geometric morphism between toposes.

Definition 1.1 For $a : A \to \Delta(I)$ and $b : B \to A$ we say that $b \in QD(a)$ iff

for some epi e in \mathcal{E} and $u: J \to I$ in \mathcal{S} . A map $b: B \to A$ is in QD iff $b \in QD(A)$ for some $a: A \to \Delta(I)$.

The idea behind this terminology is that D stands for "discrete", Q stands for "quotient" and L stands for "locally". We say that a map in

 \mathcal{E} is "a family of discrete objects" iff it appears as pullback of some $\Delta(u)$, i.e. the notion of discreteness depends on Δ which is thought of as sending $I \in \mathcal{S}$ to the *I*-fold coproduct of the terminal object in \mathcal{E} (see *e.g.* [St]). Accordingly, a map in \mathcal{E} is a "family of quotients of discrete objects" iff it is a quotient of a family of discrete objects in its fibre and a map is "locally a family of quotients of discrete objects" iff some reindexing of it along an epi in \mathcal{E} is a family of quotients of discrete objects.

From seminal work of Bénabou and Moens (as exposed in [St]) we know that a geometric morphism $\Delta \vdash \Gamma : \mathcal{E} \to \mathcal{S}$ is *bounded* iff it admits a generating family, i.e. a map $g: G \to \Delta(I)$ such that for every $a: A \to \Delta(J)$ there exist maps $u: K \to I$ and $v: K \to J$ in \mathcal{S} such that

for some epi e.

As $gl(\Delta) = \partial_1 : \mathcal{E} \downarrow \Delta \to \mathcal{S}$ is *locally small* we have the following lemma that turns out as useful for the proof of our main Theorem 2.4.

Lemma 1.1 For every object A in \mathcal{E} there is a map $u_A : I_A \to I$ and an epi $e_A : G_A \to A$ such that for every $u : J \to I$ and $f : u^*G \to A$ there is a unique $u_f : u \to u_A$ with $f = e_A \circ g_A^* \Delta(u_f)$ as shown in the following diagram

Proof. See [St] the key idea being that $I_A = \coprod_{i \in I} \mathsf{hom}(G_i, A)$.

We notice for further use that for every definable full subfibration P of $P_{\mathcal{E}}$ the full subfibration $\Delta^* P$ of $gl(\Delta) = \Delta^* P_{\mathcal{E}}$ is definable, too.

2 Definability of LQD as a full subfibration of $P_{\mathcal{E}}$

In order to prove our main Theorem 2.4 we first have to establish some lemmas.

Lemma 2.1 A map $b : B \to A$ of \mathcal{E} is in LQD if and only if there exist $u : J \to I$ in \mathcal{S} and an epi $e : u^*G \twoheadrightarrow A$ with $e^*b \in QD(u^*g)$ as exhibited in the diagram

where the label (wpb) indicates that the square is a weak pullback, i.e. that the mediating arrow from d to e^*b is epic.

Proof. The implication from right to left is evident.

For the reverse direction assume that $b \in LQD$. That means that there is an epi $e: A' \twoheadrightarrow A$ with $e^*b \in QD(a')$ for some $a': A' \to \Delta(J)$ as exhibited in the following diagram.

As g is a generating family we have

$$\begin{array}{c|c} G \longleftarrow & u^*G \xrightarrow{e_2} & A' \\ g & & \downarrow \\ g & & \downarrow \\ & (\mathsf{pb}) & \downarrow u^*g & \downarrow a' \\ \Delta(I) \xleftarrow{\Delta(u)} \Delta(K) \xrightarrow{\Delta(w)} \Delta(J) \end{array}$$

for some maps $u: K \to J$ and $w: K \to J$ in S and some epi $e_2: u^*G \to A'$. Therefore, $e_2^*e^*b$ appears as quotient of e_2^*d via $e_2^*e_1$. But as

$$e_2^*d = e_2^*a'^*\Delta(v) \cong (u^*g)^*\Delta(w)^*\Delta(v) \cong (u^*g)^*\Delta(w^*v)$$

it follows that $e_2^*e^*b \in \mathsf{QD}(u^*g)$ as desired.

Lemma 2.2 Let $a : A \to \Delta(J)$. Then $b \in QD(a)$ iff

$$\mathsf{ev} \circ a^* \varepsilon_{\Pi_a(b)}^{(J)} : a^* \Delta_J \Gamma_J \Pi_a(b) \to b$$

is epic where $\varepsilon^{(J)}$ is the counit of the adjunction $\Delta_J \dashv \Gamma_J$.

Proof. First recall that Δ_J is given by $\Delta_{/J} : S/J \to \mathcal{E}/\Delta(J)$. Therefore, the map b is in QD(a) iff there is an epic map $e : a^*\Delta_J(v) \to b$ for some $v : K \to J$ in S (as a map e in the slice over A is epic iff $\partial_0(e)$ is epic, *i.e.* iff it is epic as a map in \mathcal{E}). Thus, the map b is in QD(a) iff there is a map $e' : \Delta_J(v) \to \Pi_a(b)$ such that $\mathbf{ev} \circ \Delta_J(e')$ is epic. Using the adjunction $\Delta_J \dashv \Gamma_J$ this is further equivalent to the existence of a map $e'' : v \to \Gamma_J \Pi_a(b)$ with $\mathbf{ev} \circ a^*(\varepsilon_{\Pi_a(b)}^{(J)} \circ \Delta_J(e'')) : a^*\Delta_J(v) \to b$ epic where $\varepsilon^{(J)}$ is the counit of the adjunction $\Delta_J \dashv \Gamma_J$. But as the morphism $\mathbf{ev} \circ a^*\varepsilon_{\Pi_a(b)}^{(J)}$ is epic iff $\mathbf{ev} \circ a^*\varepsilon_{\Pi_a(b)}^{(J)} \circ a^*\Delta_J(e'')$ is epic for some $e'' : v \to \Gamma_J \Pi_a(b)$ we finally get that $b \in QD(a)$ iff $\mathbf{ev} \circ a^*\varepsilon_{\Pi_a(b)}^{(J)} : a^*\Delta_J\Gamma_J\Pi_a(b) \to b$ is epic. \Box

Lemma 2.3 Let $a : A \to \Delta(J)$ and $b : B \to A$. Then there exists a (necessarily unique) subobject $m : K \to J$ such that

- (i) $\Delta(m)^* b \in \mathsf{QD}(\Delta(m)^* a)$ and
- (ii) f factors through m whenever $\Delta(f)^* b \in QD(\Delta(f)^* a)$.

Proof. As the fibration $\mathsf{gl}(\Delta)$ has internal products and $\Delta \dashv \Gamma$ extends to a fibred adjunction between $P_{\mathcal{S}}$ and $\mathsf{gl}(\Delta)$ it follows by Lemma 2.2 that the condition $\Delta(f)^*b \in \mathsf{QD}(\Delta(f)^*a)$ is equivalent to $\Delta(f)^*(\mathsf{ev} \circ a^*\varepsilon_{\Pi_a(b)}^{(J)})$ being epic. But as being epic is a definable property w.r.t. the fundamental fibration $P_{\mathcal{E}}$ it is also a definable property w.r.t. the fibration $\Delta^*P_{\mathcal{E}} = \mathsf{gl}(\Delta)$ (see the remark immediately following Lemma 1.1). Thus, the subobject mof J satisfying the required conditions (i) and (ii) does exist. \Box

Now we are ready to prove our Main Theorem.

Theorem 2.4

The full subfibration LQD of the fundamental fibration $P_{\mathcal{E}} : \mathcal{E}^2 \to \mathcal{E}$ is definable, i.e. for every map $b : B \to A$ in \mathcal{E} there is a (uniquely determined) subobject $m : P \to A$ such that

- (i) $m^*b \in \mathsf{LQD}$ and
- (ii) f factors through m whenever $f^*b \in LQD$.

Proof. Let $g_A : G_A \to \Delta(I_A)$ and $e_A : G_A \to A$ as in Lemma 1.1. Instantiating Lemma 2.3 by g_A for a and $e_A^* b$ for b there exists a subobject $\widetilde{m} : J \to I_A$ such that

- (a) $\Delta(\widetilde{m})^* e_A^* b \in \mathsf{QD}(\Delta(\widetilde{m})^* g_A)$ and
- (b) f factors through \widetilde{m} whenever $\Delta(f)^* e_A^* b \in \mathsf{QD}(\Delta(f)^* g_A)$.

Let $n : A' \to G_A$ be the subobject of G_A obtained by pulling back $\Delta(\widetilde{m})$ along g_A and consider the epi-mono-factorisation of $e_A \circ n$

with e epic and m monic.

We now show that m satisfies the requirements (i) and (ii).

The mono *m* satisfies requirement (i) as *e* is an epi and $e^*m^*b \cong n^*e_A^*b \cong \Delta(\widetilde{m})^*e_A^*b \in \mathsf{QD}(\Delta(\widetilde{m})^*g_A)$ by (a).

For showing requirement (ii) assume that $f^*b \in \mathsf{LQD}$ for some $f: C \to A$. Then by Lemma 1.1 and Lemma 2.1 there exist a map $\widetilde{u}: \widetilde{J} \to I_A$ in \mathcal{S} and an epi $\widetilde{e}: \Delta(\widetilde{u})^*G \to C$ and such that

for some appropriate morphism $v: K \to J$ in S and epi e' in \mathcal{E} . Thus, we have that $\Delta(\widetilde{u})^* e_A^* b \cong \widetilde{e}^* f^* b \in \mathsf{QD}(\Delta(\widetilde{u})^* g_A)$ from which it follows by condition (b) that \widetilde{u} factors through \widetilde{m} via some $w: \widetilde{J} \to J$. Accordingly, the map $h = g_A^* \Delta(\widetilde{u})$ factors through $n = g_A^* \Delta(\widetilde{m})$ via $h' := g_A^* \Delta(w)$. Now it holds that

$$f \circ \widetilde{e} = e_A \circ h = e_A \circ n \circ h' = m \circ e \circ h'$$

and, therefore, we have

for a necessarily unique f'. Thus, the map f factors through m as required by (ii).

References

[St] T. Streicher

Fibred Categories à la Bénabou Notes (2000) electronically available as www.mathematik.tu-darmstadt.de/~streicher/FIBR/fib.ps.gz

Appendix Some Explicitations

We have shown that for every $b: B \to A$ there exists a greatest subobject $m: P \to A$ with $m^*b \in LQD$ such that every $f: C \to A$ with $f^*b \in LQD$ factors through m. Part of the construction of m from b can be performed inside \mathcal{E} but now and then we have "to switch universe" in an essential way using the adjunction $\Delta \vdash \Gamma: \mathcal{E} \to \mathcal{S}$.

First we explicitate the construction of g_A and e_A from Lemma 1.1. This means to explicitate how $gl(\Delta)$ is locally small. Let $g: G \to \Delta(I)$ be some generating family for $gl(\Delta)$. Let $e: E \to \Delta(I)$ be the fibrewise exponential $[g \to_{\Delta(I)} \Delta(I)^* A]$ where $\Delta(I)^* A = \pi_2 : \Delta(I) \times A \to A$. Now we may consider the pullback

where $u_A = \Gamma_I(e)$. The counit $\varepsilon_e^{(I)}$ of $\Delta_I \vdash \Gamma_I$ at e is given by $\varepsilon_E \circ \Delta(q)$ where ε_E is the counit of $\Delta \vdash \Gamma$ at E. Now the map $g_A : G_A \to \Delta(I_A)$ appears as pullback of g along $\Delta(u_A)$ and finally $e_A : G_A \twoheadrightarrow A$ is given by $\pi_2 \circ \mathbf{ev} \circ (\varepsilon_e^{(I)} \times_{\Delta(I)} g)$ where $\pi_2 : \Delta(I) \times A \to A$.

Now we describe more explicitly the subobject $\widetilde{m} : J \to I_A$ as constructed in the proof of Theorem 2.4. Let $\widetilde{b} := e_A * b$ and $p := \prod_{g_A} \widetilde{b} : P \to \Delta(I_A)$. The counit $\varepsilon_p^{(I_A)}$ of $\Delta_{I_A} \vdash \Gamma_{I_A}$ at p is constructed as $\varepsilon_P \circ \Delta(q')$ where q' is given by the following diagram.

$$\begin{array}{c} I_A \xrightarrow{q'} \Gamma P \\ \Gamma_{I_A} p \downarrow & (\mathsf{pb}) & \downarrow \Gamma p \\ I_A \xrightarrow{\eta_{I_A}} \Gamma \Delta I_A \end{array}$$

Let $f := \operatorname{ev} \circ g_A^*(\varepsilon_P \circ \Delta(q'))$. Now let $m' : P' \to \Delta(I_A)$ be the subobject of $\Delta(I_A)$ "consisting of all $i \in \Delta(I_A)$ such that f_i is epic". Then $\widetilde{m} : J \to I_A$ appears as the pullback of $\Gamma(m')$ along η_{I_A} .

Finally, we obtain the desired subobject m of A as the image of the map $e_A \circ g_A^* \Delta(\tilde{m})$.