
Realizability

Thomas Streicher

WS 17/18

Contents

1 Introduction 2

2 Kleene’s Number Realizability 5

3 Partial Combinatory Algebras 14

4 Assemblies and Modest Sets 21

5 Realizability Triposes and Toposes 35

6 Modest Models of Polymorphism 42

A Elementary Recursion Theory 45

B Formal Systems for Intuitionistic Logic 49

C Alternative Proof that Asm(A) is Regular 52

1

1 Introduction

Realizability was invented in 1945 by S. C. Kleene as an attempt to make explicit
the algorithmic content of constructive proofs.
From proofs of existence statements ∃yR(~x, y) one would like to read off a
so-called Skolem function, i.e. a function f such that R(~x, f(~x)) holds for all ~x.
Assuming (a mild form of the) axiom of choice such an f always exists whenever
∃yR(~x, y) holds. However, in general such an f will not be computable: if P is an
undecidable property of natural numbers then ∃y (y=0∧P (x))∨ (y=1∧¬P (x))
although there cannot exist an algorithmic Skolem function f : N→ {0, 1} with
∀x (f(x)=0 ∧ P (x)) ∨ (f(x)=1 ∧ ¬P (x)) since otherwise f would give rise to a
decision procedure for the predicate P .
But even in absence of any parameters from provability of ∃xA(x) it does not
necessarily follow that there is a constant c for which A(c) is provable. For exam-
ple let P be a decidable predicate of natural numbers such that ∀x¬P (x) holds
but is not provable1 then ∃x (¬P (x)→ ∀y¬P (y)) is provable (already in classical
predicate logic) but for no natural number n one can prove ¬P (n)→ ∀y¬P (y) as
it is logically equivalent to the unprovable statement ∀y¬P (y) (because ¬P (n)
is trivially provable).
These examples show that classical proofs of ∃xA(x) do not always give rise to
witnesses, i.e. objects c for which A(c) is provable. The very idea of constructive
(or intuitionistic) logic (introduced by L. E. J. Brouwer at the beginning of the
20th century) was to restrict the rules and axioms of logic in such a way that

(E) whenever ∃xA(x) is provable then A(t) is provable for some term t

(D) if A ∨B is provable then A is provable or B is provable (or both).

Actually these requirements form part of an informal semantics of constructive
logic which has come to be widely known under the name of

Brouwer-Heyting-Kolmogorov (BHK) Interpretation

1. a witness of A ∧B is a pair 〈p, q〉 such that p is a witness of A and q is a
witness of B

2. a witness of A → B is a function p mapping any witness q of A to a
witness p(q) of B

3. a witness of A∨B is a pair 〈i, p〉 such that either i = 0 and p is a witness
of A or i = 1 and p is a witness of B

4. a witness of ∀xA(x) is a function p mapping any object c to a witness p(c)
of A(c)

5. a witness of ∃xA(x) is a pair 〈c, p〉 such that p is a witness of A(c)

1According to Gödel’s 2nd Incompleteness Theorem one could take for P (x) the predicate
saying that x codes a derivation of 0=1 in the formal system under consideration.

2

6. there is no witness for ⊥ (falsity).

For basic assertions A it is intentionally left unspecified what are their witnesses.
Typically, e.g. in arithmetic, the witness for n = m is either a basic unspecified
object ∗ if n = m or there is no witness at all if n 6= m.
Notice that “being a witness of a proposition” is a basic notion that cannot
be further analyzed but this also applies to the notion of “truth of a proposi-
tion” as employed in the usual informal explanation of classical logic à la Tarski.
Whereas the meaning explanation à la Tarski is usually called truth value seman-
tics the meaning explanation à la Brouwer-Heyting-Kolmogorov may be called
a proof semantics as it specifies for every proposition A what is a “proof” or – as
we say – “witness” of A.2 Notice, however, that such a “witness” shouldn’t be
thought of as a formal derivation as every true Π0

1 sentence ∀x.t=s is witnessed
by the function λx.∗.3
The basic idea of realizability is to provide mathematically precise instantiations
of the BHK interpretation where the informal notion of “witness” is replaced
by a particular mathematical structure A which can be understood as a (uni-
versal) untyped model of computation. Having fixed such an A propositions are
interpreted as subsets of A, i.e. a proposition A is identified with the set of its
witnesses (in A).
We assume that A is a non-empty set of “algorithms” together with a partial bi-
nary operation · on A where a·b is thought of as the result of applying algorithm
a to b.4 A (conservative) choice is taking N for A and defining n·m as Kleene
application {n}(m), i.e. n-th partial recursive function applied to m.5 The only
assumption about the structure (A, ·) is that for every polynomial t[x1, . . . , xn, x]
there is a polynomial Λx.t[x1, . . . , xn, x] in the variables x1, . . . , xn such that for
all a1, . . . , an, a ∈ A it holds that (Λx.t[a1, . . . , an, x]) ·a = t[a1, . . . , an, a] when-
ever t[a1, . . . , an, a]↓, i.e. whenever t[a1, . . . , an, a] is defined. Notice, however,
that we do not require that definedness of (Λx.t[a1, . . . , an, x]) · a implies de-
finedness of t[a1, . . . , an, a] (although for the “first Kleene algebra”, i.e. N with
Kleene application, and most other A we will encounter such a choice will be
possible!).
Now given such an untyped model (A, ·) of computation, usually called a pca
(acronym for partial combinatory algebra), one may build a category Asm(A)
of so-called assemblies over A which has got enough structure to interpret most
of higher order intuitionistic logic (HOIL). An assembly (over A) is a pair X =
(|X|, ‖ ·‖X) where X is a set and ‖ ·‖X : |X| → P(A) such that ‖x‖X 6= ∅ for all
x ∈ |X|. The non-empty subset ‖x‖X of A is thought of as the set or realizers or
codes for the element x ∈ |X|. We also write a X x (speak “a realizes x”) for

2We prefer to use the more neutral word “witness” rather than “proof” as the latter might
be (mis)understood as “formal derivation” which is definitly not what we have in mind!

3Only when we formalize realizability one may reasonably ask whether it is provable (in
the formal system under consideration) that λx.∗ is a witness for ∀x.t=s.

4The operation · is assumed as potentially partial because the evaluation of a·b may fail
to terminate. Moreover, we do not distinguish between algorithms and data and, accordingly,
everything is thrown into a single set A.

5We employ Kleene’s notation {n} for the n-th partial recursive function.

3

a ∈ ‖x‖X . If X and Y are assemblies over A then a morphism from X to Y in
Asm(A) is a (set-theoretic) function f : |X| → |Y | which is realized or tracked
by an element e ∈ A meaning that ∀x ∈ |X| ∀a ∈ ‖x‖X e·a↓ ∧ e·a ∈ ‖f(x)‖Y .
We write e f for “f is realized by e”. Intuitively, the function f is realizable
iff it can be implemented (in terms of codes) by an algorithm from A. The set
of realizable maps from X to Y can itself be organized into an assemply Y X

with |Y X | = Asm(A)(X,Y) and ‖f‖Y X = {e ∈ A | e f}.
An interesting and most useful full subcategory of Asm(A) is the category
Mod(A) whose objects are those assemblies X where x = x′ whenever e ∈
‖x‖X ∩ ‖x′‖X . The objects of Mod(A) are called modests sets (over A). The
intuition behind this notion is that elements of modest sets are determined
uniquely by their realizers. A modest set X can be understood as a partially
enumerated set in the following way: let CX = {a ∈ A | ∃x ∈ |X| a ∈ ‖x‖X}
and εX : CX → |X| be the (surjective!) function sending e ∈ CX to the unique
element εX(e) ∈ |X| with e εX(e).

The main aim of these lectures is to demonstrate that

• Asm(A) has enough structure for interpreting constructive logic and math-
ematics and

• Mod(A) is a well-behaved full subcategory of Asm(A) containing all data
types needed for (functional) computation.

4

2 Kleene’s Number Realizability

Although the emphasis of this course is on realizability models in this introduc-
tory chapter we present Kleene’s original account of number realizability which
was motivated rather by proof-theoretic aims, namely the extraction of algo-
rithms from constructive proofs.
Kleene’s idea was to associate with every closed formula A of arithmetic a
predicate on natural numbers telling which n realize A. He defined his notion
of number realizability by recursion on the structure of A as follows

• n realizes t = s iff t = s

• n realizes A ∧B iff fst(n) realizes A and snd(n) realizes B

• n realizes A → B iff for every m realizing A the computation {n}(m)
terminates and its result realizes B

• n realizes A ∨ B iff fst(n) = 0 and snd(n) realizes A or fst(n) 6= 0 and
snd(n) realizes B

• n realizes ∀x.A(x) iff for all numbers m the computation {n}(m) termi-
nates and its result realizes A(m)

• n realizes ∃x.A(x) iff snd(n) realizes A(fst(n))

where fst and snd are prim. rec. projections for some prim. rec. pairing function

〈·, ·〉 : N × N
∼=→ N (i.e. 〈fst(n), snd(n)〉 = n for all n ∈ N). Obviously, these

clauses are quite similar to those of the BHK interpretation but more specific
in the sense that a) witnesses are bound to be natural numbers and b) appli-
cation of witnesses is given by Kleene application. Notice that a Π2 sentence
∀x∃y R(x, y) (where R(x, y) ≡ r(x, y) = 0 for some prim. rec. function r) is
realized by e iff for all n ∈ N the computation {e}(n) terminates with a value
m such that R(n, fst(m)) holds (and is realized by snd(m)). Thus e realizes
∀x∃y R(x, y) iff e is the Gödel number of an algorithm such that Λn. fst({e}(n))
computes a Skolem function for this sentence. Notice that the sentence 0 = 1
has no realizer at all and, therefore, can be taken as the false proposition also
denoted as ⊥. As usual in constructive logic negation is defined as ¬A ≡ A→ ⊥.
We have e realizes ¬A iff from n realizes A it follows that {e}(n) terminates and
realizes ⊥. As no number realizes ⊥ we have that e realizes ¬A iff there is no
realizer for A. Accordingly, e realizes ¬¬A iff there is some realizer for A. Thus
negated formulas have no realizer at all or are realized by all numbers. Accord-
ingly, from realizers of negated formulas one cannot read off any computational
content at all.
An example of a classically provable formula that is not realizable is

A ≡ ∀x {x}(x)↓ ∨ ¬{x}(x)↓

with {x}(y)↓ standing for ∃z T (x, y, z) where T is Kleene’s T predicate (see
[Ro]). Now if e were a realizer for A then Λn.fst({e}(n)) would give rise to

5

an algorithm deciding the halting problem which is clearly impossible. Thus A
is not realizable and accordingly ¬A is realized by all natural numbers. This
illustrates how classically wrong propositions may well be realizable.

Actually, for every arithmetical formula A the predicate “n realizes A” on n
can itself be expressed in the language of arithmetic. That’s done in the next
definition where we also drop the assumption that A is a closed formula.

Definition 2.1. (formalized number realizability)
The realizability relation n rn A is defined by induction on the structure of A
via the following clauses

n rnP ≡ P where P is atomic

n rnA ∧B ≡ fst(n) rnA ∧ snd(n) rnB

n rnA→ B ≡ ∀m.(m rnA→ {n}(m)↓ ∧ {n}(m) rnB)

n rnA ∨B ≡
(
fst(n) = 0→ snd(n) rnA

)
∧
(
fst(n) 6= 0→ snd(n) rnB

)
n rn ∀x.A(x) ≡ ∀m.{n}(m)↓ ∧ {n}(m) rnA(m)

n rn ∃x.A(x) ≡ snd(n) rnA(fst(n))

where in n rnA the variable n is (tacitly) assumed not to be free in A. ♦

Notice that when expanding the defining clauses for implication and universal
quantification according to the conventions introduced in Appendix A we get

n rnA→ B ≡ ∀m.m rnA→ ∃k. T (n,m, k) ∧ U(k) rnB

n rn ∀x.A(x) ≡ ∀m.∃k. T (n,m, k) ∧ U(k) rnA(m)

which are more explicit but also less readable.
It is desirable to show that whenever A is provable then there exists a natural
number e such that e rnA is provable as well. Of course, such a statement
depends on what is meant by “provable”.
For the purpose of making “provable” precise one usually considers the formal
system HA (Heyting Arithmetic) and extensions of it.6 The underlying (first
order) language of HA consists of symbols for every (definition of a) primitive
recursive function (see Def. A.1). Thus, in particular, we have a constant 0 and
a unary function symbol succ (for the successor operation). For every natural
number n there is a term succn(0), the numeral for n, which for sake of read-
ability7 we also denote by n. Heyting arithmetic HA is based on constructive
or intuitionistic logic for which formal systems can be found in Appendix B.
The non-logical axioms of HA (besides the usual equality axioms8) consist of

6In the proof theoretic literature one often finds also subsystems of HA where the induction
schema is restricted to formulas of a certain logical complexity, e.g. restriction to quantifier-free
formulas gives rise to PRA (Primitive Recursive Arithmetic) whose provably total recursive
functions are precisely the primitive recursive ones.

7Often in the literature (e.g. the papers by A. S. Troelstra cited in the references) one finds
n as a notation for succn(0). This is certainly more precise but also more cumbersome.

8namely x = x and A[x] ∧ x = y → A[y]

6

(1) defining equations for primitive recursive function definitions

(2) Induction Scheme A(0) ∧ ∀x
(
A(x)→ A(succ(x))

)
→ ∀xA(x)

(3) ¬ 0 = succ(x).

In the induction scheme A may be instantiated with an arbitrary predicate
expressible in the language of HA. The third axiom is needed for ensuring that
not all numbers are equal.9

For understanding the formulation of the following Soundness Theorem recall
the notational conventions introduced in Appendix A.

Theorem 2.1. (Soundness of Number Realizability)
If a closed formula A can be derived in HA then there is a term e built up from
constants for primitive recursive functions, Kleene application and Λ-abstraction
such that e rnA can be derived in HA.

Proof. As we want to prove soundness by induction on the structure of deriva-
tions in HA we have to generalise our claim as follows: whenever A1, . . . , An ` A
is derivable in HA then there is a term e such that HA proves

u1 rnA1 ∧ . . . ∧ un rnAn ` e rnA

where the variables ui are fresh and e is a term built from constants for primitive
recursive functions, Kleene application {·}(·), Λ-abstraction and variables from
FV (A1, . . . , An, A) ∪ {u1, . . . , un}.
For sake of readability we often write ~u rn Γ for u1 rnA1 ∧ . . . ∧ un rnAn when
Γ ≡ A1, . . . , An.
It is easy to show that the generalised claim holds for the structural rules (ax),
(ex), (w) and (c) as primitive recursive functions contain all projections and
are closed under permutation of arguments, addition of dummy arguments and
identification of arguments.
(∧I) If HA proves ~u rn Γ ` e1 rnA and ~u rn Γ ` e2 rnB then HA proves
~u rn Γ ` 〈e1, e2〉 rnA∧B.
(∧E) If HA proves ~u rn Γ ` e rnA∧B then HA proves ~u rn Γ ` fst(e) rnA and
~u rn Γ ` snd(e) rnB.
(→I) If HA proves ~u, v rn Γ, A ` e rnB then ~u rn Γ ` Λv.e rnA→B can be
proved in HA.
(→E) If HA proves ~u rn Γ ` e1 rnA→B and ~u rn Γ ` e2 rnA then HA proves
~u rn Γ ` {e1}(e2) rnB.
(⊥E) Suppose that HA proves ~u rn Γ ` e rn⊥. Then HA proves ~u rn Γ ` ⊥
because e rn⊥ is provably equivalent to ⊥. Thus ~u rn Γ ` 0 rnA can be proved
in HA.
(∀I) Suppose that HA proves ~u rn Γ ` e rnA(x) where x 6∈ FV (Γ). Then HA
proves ~u rn Γ ` Λx.e rn ∀x.A(x).

9That succ is injective can be proved in HA because due to the defining equations for
the predecessor function pred from succ(x) = succ(y) it follows that x = pred(succ(x)) =
pred(succ(y)) = y.

7

(∀E) If HA proves ~u rn Γ ` e rn ∀x.A(x) then ~u rn Γ ` {e}(t) rnA(t) is provable
in HA.
(∃I) If HA proves ~u rn Γ ` e rnA(t) then ~u rn Γ ` 〈t, e〉 rn ∃x.A(x) can be
proved in HA.
(∃E) Suppose that HA proves ~u rn Γ ` e1 rn ∃x.A(x) and ~u, u rn Γ, A(x) `
e2 rnB where x 6∈ FV (B). Then ~u rn Γ ` e2[fst(e1), snd(e1)/x, u] rnB can be
proved in HA.
(∨I) and (∨E) are left as exercises.
It remains to check that the axioms of HA are realized. This is trivial for the
equations as these are realized by any number (e.g. 0). The axiom ¬ succ(x) = 0
is realized e.g. by Λn.0.
Next we consider instances of the induction scheme. First of all notice that
there exists10 a number r such that

{{r}(〈e0, e1〉)}(0) = e0 {{r}(〈e0, e1〉)}(k+1) ' {{e1}(k)}({{r}(〈e0, e1〉)}(k))

holds for all numbers e0, e1 and k and these properties can be verified in HA.
Now, for a predicate A(x) with free variables ~z besides x one can prove in HA
that r rnA(0) ∧ (∀x.(A(x) → A(succ(x)))) → ∀x.A(x), i.e. that r realizes the
induction scheme.

Now one might hope that for every formula A one can prove in HA the equiva-
lence A↔ ∃x.x rnA or at least that11 HA ` A iff HA ` ∃x.x rnA. Alas, this
hope is in vain since for

CT0 (∀x.∃y.A(x, y))→ ∃e.∀x.A(x, {e}(x))

we have HA ` ∃x. x rn CT0, but CT0 cannot be proved in HA as CT0 cannot
be proved in PA since for some instance of CT0 its negation can be proved
in PA (Exercise!). However, for an Extended Church’s Thesis ECT0 defined
subsequently we can achieve our goal, namely prove that

Theorem 2.2. (Characterisation of Number Realizability)
For all formulas A of HA it holds that

(1) HA + ECT0 ` A↔ ∃x. x rnA

(2) HA + ECT0 ` A iff HA ` ∃x. x rnA.

In order to formulate ECT0 we have to introduce the following notion.

Definition 2.2. The almost negative or almost ∃-free formulas are those which
can be built from atomic formulas and formulas of the form ∃x. t=s by ∧, →
and ∀. ♦

10This is a typical argument by appeal to Church’s Thesis. One can easily exhibit an
algorithm for the primitive recursion operator R in any programming language whatsoever
and, therefore, this algorithm has a Gödel number, say r.

11We employ the notation HA ` A for the meta-mathematical statement that HA proves
the sequent ` A.

8

Now we can formulate the Extended Church’s Thesis

ECT0 ∀x.
(
A(x)→∃y.B(x, y)

)
→ ∃e.∀x.

(
A(x)→ {e}(x)↓ ∧B(x, {e}(x))

)
where A is required to be almost negative. Using the notational conventions of
Appendix A one can reformulate ECT0 as

∀x.
(
A(x)→∃y.B(x, y)

)
→ ∃e.∀x.

(
A(x)→ ∃z.T (e, x, z) ∧ ∧B(x, U(z))

)
for almost negative A.
Before proving Theorem 2.2 we have to establish some useful properties of almost
negative formulas.
By inspection of the defining clauses for number realizability (Def. 2.1) it is
evident that for all formulas A the formula x rnA is provably equivalent to an
almost negative formula (by eliminating all occurrences of {n}(m) as described
in Appendix A).
Next we show that almost negative formulas A are equivalent to ∃x. x rnA and
that this equivalence can be proved in HA.

Lemma 2.1. For almost negative formulas A it holds that

(1) HA ` (∃x. x rnA)→ A and

(2) there is a term ψA with HA ` A→ ψA rnA

and, therefore, that HA ` A↔ ∃x. x rnA.

Proof. We prove (1) and (2) simultaneously by induction on the structure of
almost negative formulas.
For primitive formulas t=s we have that ∃x. x rn t=s equals ∃x. t=s which is
equivalent to t=s as x is not free in t=s. Thus, (1) holds for t=s. Claim (2)
holds for t=s by putting ψt=s ≡ 0.
For formulas of the form ∃x. t=s we have that

x rn ∃x. t=s ≡ snd(x) rn t=s[fst(x)/x]

and, therefore, one easily proves x rn∃x. t=s → ∃x. t=s. For claim (2) one
puts ψ∃x.t=s ≡ 〈µx.t=s, 0〉 where µx.t=s is the (Gödel number of an) algo-
rithm searching for the least x satisfying the decidable condition t=s. Obvi-
ously, µx.t=s terminates if ∃x.t=s and, therefore, HA proves that ∃x. t=s →
0 rn t=s[µx.t=s/x]. But as 0 rn t=s[µx.t=s/x] is easily seen to be equivalent to
〈µx.t=s, 0〉 rn ∃x. t=s it follows that HA ` ∃x. t=s→ ψ∃x.t=s rn ∃x. t=s.
Suppose as induction hypothesis that the almost negative formulas A and B
satisfy the claims (1) and (2).
Then claim (1) holds for A∧B as y rnA→ A and z rnB → B hold by induction
hypothesis and thus also (fst(x) rnA ∧ snd(x) rnB) → A∧B, i.e. x rnA∧B →
A∧B. Claim (2) for A ∧B follows readily by putting ψA∧B ≡ 〈ψA, ψB〉.
Now we show (1) for A→B. Suppose x rnA→B, i.e. ∀y. y rnA→ {x}(y) rnB.
As by induction hypothesis A → ψA rnA we get that A → {x}(ψA) rnB and

9

as z rnB → B by induction hypothesis for B it follows that A→B. As this
argument can be formalised in HA it follows that HA ` x rnA→B → A→B
and we have established claim (1) for A→B. Claim (2) for A→B follows by
putting ψA→B ≡ Λx.ψB using that by induction hypothesis we have x rnA→ A
and B → ψB rnB.
We leave the case of the universal quantifier as an exercise.
As (2) entails that HA ` A→ ∃x. x rnA for almost negative A it follows from
(1) and (2) that HA ` A↔ ∃x. x rnA for almost negative A.

The following idempotency of formalized realizability appears as a corollary.

Corollary 2.1. For every formula A in the language of HA it holds that HA `
∃x. x rnA↔ ∃x. x rn (∃x. x rnA).

Proof. Straightforward exercise using Lemma 2.1 and that x rnA is provably
equivalent to an almost negative formula.

Using Lemma 2.1 one can now show that

Lemma 2.2. For every instance A of ECT0 we have HA ` ∃e. e rnA.

Proof. Let A be almost negative. Suppose that e rn∀x
(
A(x) → ∃y.B(x, y)

)
,

i.e. that

∀x, n.
(
n rnA(x)→ ∃z. T ({e}(x), n, z) ∧ U(z) rn ∃y.B(x, y)

)
Substituting ψA for n we get

∀x.
(
ψA rnA(x)→ ∃z. T ({e}(x), ψA, z) ∧ U(z) rn∃y.B(x, y)

)
As A is almost negative from Lemma 2.1 we get n rnA(x) → ψA rnA(x) and,
therefore, we have

∀x, n.
(
n rnA(x)→ ∃z. T ({e}(x), ψA, z) ∧ U(z) rn ∃y.B(x, y)

)
i.e.

∀x, n.
(
n rnA(x)→ ∃z. T ({e}(x), ψA, z) ∧ snd(U(z)) rnB(x, fst(U(z)))

)
Let t1[e] ≡ Λx.fst({{e}(x)}(ψA)). As

∀x
(
A(x)→ ∃z. T (t1[e], x, z) ∧B(x, U(z))

)
is realized by t2[e] ≡ Λx.Λn.〈µz.T (t1[e], x, z), 〈0, snd({{e}(x)}(ψA))〉〉 we finally
get that Λe.〈t1[e], t2[e]〉 realizes

∀x.
(
A(x)→∃y.B(x, y)

)
→ ∃e.∀x.

(
A(x)→∃z. T (e, x, z)∧B(x, U(z))

)
as desired.
As the whole argument can be formalized within HA the claim follows.

10

The assumption that A is almost negative has been used for making the choice
of y with B(x, y) independent from the realizer of the premiss A. Actually,
adding the unrestricted12 scheme

ECT∗0 (∀x.A→ ∃y.B(x, y))→ ∃e.∀x.A→ ∃z.T (e, x, z)∧B(x, U(z))

to HA is inconsistent as can be seen when instantiating A by ∃z. T (x, x, z) ∨
¬∃z. T (x, x, z) and B(x, y) by (y=0∧∃z.T (x, x, z))∨ (y=1∧¬∃z. T (x, x, z)) (cf.
the Remark on p.197 of [Tr73]).13

Now we are ready to give the

Proof of Theorem 2.2:
(1) We show that HA + ECT0 ` A↔ ∃x. x rnA by induction on the structure
of formulas A in HA.
Condition (1) is obvious for atomic formulas.
(∧) Obviously, ∃x. x rnA∧B ↔ ∃x.x rnA∧∃x.x rnB is provable in HA. Thus,
as by induction hpothesis HA + ECT0 ` A ↔ ∃x. x rnA and HA + ECT0 `
B ↔ ∃x. x rnB it follows that HA + ECT0 ` A∧B ↔ ∃x.x rnA∧B.
(→) By induction hypothesis A and B satisfy (1). Therefore, A→B is equivalent
to ∀x. x rnA → ∃y. y rnB which by ECT0 (as x rnA is almost negative) is
equivalent to ∃z.∀x. x rnA→ {z}(x)↓ ∧ {z}(x) rnB, i.e. ∃z. z rnA→B.
(∀) By induction hypothesis A(y) satisfies (1). Thus ∀y.A(y) is equivalent to
∀y.∃x. x rnA(y) which by ECT0 is equivalent to ∃z.∀y. {z}(y)↓∧{z}(y) rnA(y),
i.e. ∃z. z rn ∀y.A(y).
(∃) Assume as induction hypothesis that HA + ECT0 ` A(x)↔ ∃z. z rnA(x).
By definition x rn ∃x.A(x) ≡ snd(x) rnA(fst(x)). Thus, we have HA+ECT0 `
x rn∃x.A(x) → A(fst(x)) as it follows from the induction hypothesis (by sub-
stituting fst(x) for x) that HA + ECT0 ` snd(x) rnA(fst(x)) → A(fst(x)).
But from HA + ECT0 ` x rn ∃x.A(x)→ A(fst(x)) it follows immediately that
HA+ECT0 ` x rn∃x.A(x)→ ∃x.A(x) and, therefore, also that HA+ECT0 `
∃x. x rn ∃x.A(x)→ ∃x.A(x).
On the other hand by induction hypothesis we have HA + ECT0 ` A(x) →
∃z. z rnA(x). As HA ` z rnA(x) → 〈x, z〉 rn ∃x.A(x) and, therefore, also
HA ` z rnA(x) → ∃x. x rn∃x.A(x) it follows that HA ` ∃z. z rnA(x) →

12i.e. there are no restrictions on the syntactic form of A
13For this choice of A and B the premiss of ECT∗

0 is obviously provable in HA. Thus, by
ECT∗

0 it follows that ∃e.∀x.A(x)→ {e}(x)↓ ∧B(x, {e}(x)). As ¬¬A(x) is provable in HA it
follows from ECT∗

0 that ∃e.∀x.¬¬({e}(x)↓ ∧B(x, {e}(x)), i.e. more explicitly that

(1) ∀x.¬¬
(
{e}(x)↓ ∧

(
({e}(x)=0 ∧ {x}(x)↓) ∨ ({e}(x)=1 ∧ ¬{x}(x)↓)

))
for some e. Let e0 be a Gödel number of an algorithm such that {e0}(x)↓ iff {e}(x)=1. Now
instantiating x in (1) by e0 we get

(2) ¬¬
(
{e}(e0)↓ ∧

(
({e}(e0)=0 ∧ {e0}(e0)↓) ∨ ({e}(e0)=1 ∧ ¬{e0}(e0)↓)

))
which, however, is contradictory as due to the nature of e0 if {e}(e0)=0 then ¬{e0}(e0)↓ and
if {e}(e0)=1 then {e0}(e0)↓.

11

∃x. x rn ∃x.A(x). Thus, HA + ECT0 ` A(x)→ ∃x. x rn ∃x.A(x) from which it
readily follows that HA + ECT0 ` ∃x.A(x)→ ∃x. x rn ∃x.A(x).
(∨) This case is redundant as disjunction can be expressed in terms of the other
connectives and quantifiers.

(2) Suppose that HA ` ∃e. e rnA. Then also HA + ECT0 ` ∃e. e rnA from
which it follows by the already established claim (1) that HA + ECT0 ` A.
Suppose that HA+ECT0 ` A. Then HA ` B1∧. . .∧Bn → A for some instances
Bi of ECT0. By Theorem 2.1 we have HA ` ∃e. e rn (B1 ∧ . . .∧Bn → A) from
which it follows that HA ` ∃e. e rnA as for the Bi we have HA ` ∃e. e rnBi
by Lemma 2.2. 2

Notice, however, that in general HA does not prove ∃x. x rnA → A as can be
seen when substituting for A an instance of CT0 that is not derivable in HA.
This defect can be remedied by changing the notion of number realizability to
number realizability combined with truth, i.e. one associates with every formula
A a predicate x rntA (with x fresh) where all clauses are as in Def. 2.1 with
the single exception that the clause for implication is modified as follows

n rntA→ B ≡
(
∀m.m rntA→ {n}(m)↓ ∧ {n}(m) rntB

)
∧ (A→ B)

For this notion of realizability with truth one easily proves that

Theorem 2.3. For all formulas A in the language of HA it holds that

(1) HA ` (∃x. x rntA)→ A

(2) If HA ` A then there is a number e with HA ` {e}(〈~x〉) rntA where ~x
contains all free variables of A.

Thus, for a closed formula A we have HA ` A iff HA ` ∃x. x rntA.14

Proof. Exercise!

Notice that in HA one cannot always prove the equivalence of A and ∃x. x rntA
since this equivalence may fail in the standard model N of HA. But for negated
formulas this equivalence holds.

Theorem 2.4. For all formulas of HA we have HA ` ¬A↔ ∃n. n rnt¬A.

Proof. Since HA proves n rntA→ A it also proves ¬A→ ¬(n rntA) and thus
also ¬A→ ∀n. n rnt¬A and thus in particular also ¬A→ ∃n. n rnt¬A.

Using Th. 2.3 one easily proves the following important metamathematical prop-
erty of HA.

Theorem 2.5. (Disjunction and Existence Property)

14It is an open problem (spotted by P. Lietz) to find an extension HA∗ of HA such that
for closed A, HA∗ ` A iff PA ` ∃x. x rntA.

12

(1) If HA ` A ∨B with A and B closed then HA ` A or HA ` B

(2) If HA ` ∃x.A(x) and ∃x.A(x) is closed then there exists a number n such
that HA ` A(n).

One might dislike that the formulation of ECT0 is somewhat complicated as it
requires the syntactic notion “almost negative”. Actually, one can avoid this if
one postulates15 the so-called Markov’s Principle

MP ¬¬∃x.A(x)→ ∃x.A(x) (A primitive recursive).

Using MP one easily shows that every almost negative formula is provably equiv-
alent to a negative formula, i.e. one without any occurrences of ∨ or ∃.16 Thus,
in particular, for every formula A the formula x rnA is provably equivalent to a
negative formula RA(x). Accordingly, in HA + MP + ECT0 one can prove the
equivalences ¬A⇔ ¬∃x.x rnA⇔ ∀x.¬RA(x). As the latter formula is negative
in HA+MP+ECT0 every negated formula is provably equivalent to a negative
one. Thus HA + MP + ECT0 proves

ECT′0 (∀x.(¬A(x)→ ∃y.B(x, y)))→ ∃e.∀x.(¬A(x)→ B(x, {e}(x)))

for arbitrary formulas A and B. Notice that ECT′0 entails ECT0 as under MP
every almost negative formula is equivalent to a negated formula and thus to
its double negation.
Now from Theorem 2.2 it follows immediately that

Theorem 2.6. For all formulas A of HA it holds that

(1) HA + MP + ECT′0 ` A↔ ∃x. x rnA

(2) HA + MP + ECT′0 ` A iff HA + MP ` ∃x. x rnA.

Using the fact that PA is conservative w.r.t. almost negative formulas over HA
one can show that PA ` ∃x. x rnA iff HA + MP + ECT′0 ` ¬¬A.
Theorems 2.2 and 2.6 have become known under the name “Trolestra’s Axiom-
atization of Realizability” and date back to the early 1970ies, see [Tr73] which
is encyclopedic also for axiomatizations of other notions of realizability (and
related interpretations like e.g. Gödel’s functional interpretation).

15Actually, one can show (exercise!) that MP is equivalent to

¬¬∃z.T (x, y, z)→ ∃z.T (x, y, z)

saying that “a computation terminates if it is impossible that it diverges”.
16The reason is that for primitive recursive predicates P (x) Markov’s Principle says that
∃x.P (x)↔ ¬¬∃x.P (x) and the right hand side of the latter equivalence is logically equivalent
to ¬∀x.¬P (x), i.e. a negative formula.

13

3 Partial Combinatory Algebras

In this chapter we introduce the basic notion of structure over which one can
build realizability models, namely so-called partial combinatory algebras (pca’s)
which provide a notion of untyped model of computation. This notion has a lot
of instances and we will present the most important examples that will be used
later on again and again.

Definition 3.1. A weak partial combinatory algebra (wpca) is a pair A =
(|A|, ·) where |A| is a non-empty set and · : |A| × |A|⇀ |A| is a partial binary
operation on |A| such that there exist elements k, s ∈ |A| satisfying the conditions

(1) k · a · b = a

(2) s · a · b ↓

(3) s · a · b · c = a · c · (b · c) whenever a · c · (b · c) ↓

for all a, b, c ∈ |A|.
A partial combinatory algebra (pca) A is a weak pca A where s can be chosen
in such a way that s · a · b · c ↓ implies a · c · (b · c) ↓ for all a, b, c ∈ |A|. ♦

Notation Often, for sake of readability, we write simply ab instead of a·b.

At first sight the notion of partial combinatory algebra may look a bit weird
due to its existential quantification over k and s satisfying a couple of fancy
properties. The next lemma gives an alternative characterization of pca’s. For
this purpose we have to introduce the notion of polynomial over A = (|A|, ·),
i.e. terms built from countably many variables and constants17 for elements of
|A| via the binary operation · : |A| × |A| ⇀ |A|. We write T (A) for the set
of polynomials over A. Moreover, we write t1 ' t2 as an abbreviation for the
statement that either t1 and t2 are both undefined or both sides are defined and
equal (so-called strong equality).18

Lemma 3.1. Let A be an applicative structure, i.e. A = (|A|, ·) where |A| is a
non-empty set and · : |A| × |A| ⇀ |A|. Then A is a weak partial combinatory
algebra iff for every polynomial t ∈ T (A) and variable x there exists a polynomial
Λx.t ∈ T (A) with FV(Λx.t) ⊆ FV(t)\{x} such that Λx.t ↓ and (Λx.t)·a = t[a/x]
whenever t[a/x] ↓ .
Moreover, A is a pca iff for every polynomial t ∈ T (A) and variable x there
exists a polynomial Λx.t ∈ T (A) with FV(Λx.t) ⊆ FV(t) \ {x} such that Λx.t ↓
and (Λx.t)·a ' t[a/x] for all a ∈ |A|.

Proof. ⇐ : The elements k and s are given by Λx.Λy.x and Λx.Λy.Λz.xz(yz),
respectively. It is straightforward to check that the so defined k and s satisfy
conditions (1)-(3) of Def. 3.1.
⇒ : We define Λx.t by structural recursion on t ∈ T (A) as follows: Λx.x ≡ skk,
Λx.y ≡ ky if y is different from x and Λx.t1t2 ≡ s(Λx.t1)(Λx.t2).

17We use a itself as the constant denoting a ∈ |A|.
18more constructively, we may formulate t1 ' t2 as (t1↓ ∨ t2↓)⇒ t1 = t2

14

Thus, an applicative structure A is a pca iff there is some kind of functional ab-
straction available for polynomials over A. In a weak pca we permit that (Λx.t)a
may be defined even if t[a/x] is not defined. This weaker form of functional ab-
straction is sometimes easier to establish and, more importantly, sufficient for
building realizability models.
Partial combinatory algebras whose application operation · is total were orig-
inally introduced as models for combinatory logic and λ-calculus19 (see [HS]).
However, most models of computation are inherently partial (as e.g. classical
recursion theory, see [Ro]) and the notion of pca is defined in a way that it
subsumes these partial models as well.

Example 3.1. (the first Kleene algebra K1)
The underlying set of K1 is the set N of natural numbers and application is
given by Kleene application, i.e. n·m ' {n}(m). Appropriate elements k and s
are given by Λx.Λy.x and Λx.Λy.Λz.xy(yz), respectively.
Notice that this choice of s exhibits K1 as a pca and not only a weak pca.

Example 3.2. (Scott’s Pω)
The underlying set of Pω is the powerset of ω = N. In order to define a (total)
application on Pω we have to introduce (besides a prim. rec. pairing function
with prim. rec. projections) the following bijection between finite subsets of N
and N itself: en = A iff n =

∑
k∈A 2k. Obviously, the predicates m ∈ en and

m = |en| are primitive recursive. In Pω application is defined as follows

a·b = {n ∈ N | ∃m ∈ N. em ⊆ b ∧ 〈m,n〉 ∈ a}

for a, b ∈ Pω. Notice that a map f : Pω → Pω is of the form f(x) = a·x
for some a ∈ Pω iff f is continuous w.r.t. the Scott topology on the cpo Pω.20

Moreover, the map ev : Pω → PωPω : a 7→
[
b 7→ a·b

]
has a right inverse

fun : PωPω → Pω : f 7→ {〈n,m〉 | m ∈ f(en)}, i.e. ev ◦ fun = id .21 Using ev
and fun we can implement the combinators k and s by fun(λx.fun(λy.x)) and
fun(λx.fun(λy.fun(λz.ev(ev(x)(z))(ev(y)(z))))), respectively. Using the facts that
domains form a model of typed λ-calculus (see [St4]) and ev ◦ fun = id it is
straightforward to verify that the so defined k and s actually satisfy the re-
quirements (1)-(3) of Def. 3.1. Since the application operation is total it follows
trivially that (Pω, ·) is a pca and not only a weak pca.22

Obviously, with the same argument every domain U containing UU as a retract
gives rise to a total pca as it provides a model for the λβ-calculus (see [Sc80]).
Prominent examples of such U are Scott’s D∞ and [N⇀N], the domain of partial
maps of natural numbers, see e.g. [St4] for more information.

19In order to model untyped λ-calculus pca’s have to satify some additional properties as
dicussed in [HS].

20For background information about elementary domain theory see e.g. [St4].
21It also holds that fun(ev(a)) ⊇ a for all a ∈ Pω.
22For a direct account avoiding elementary domain theory see vol.2 of [TvD].

15

Example 3.3. (Pωeff)
One easily observes that k and s as chosen in Example 3.2 are recursively enu-
merable (r.e.) sets and that r.e. sets are closed under the application defined in
Example 3.2. We write Pωeff for the ensuing (sub-)pca (of Pω).

Example 3.4. (the second Kleene algebra K2)
The underlying set of K2 is the set NN of all total functions from N to N. The
set NN can be endowed with the topology whose basic opens are of the form
Us = {α ∈ NN | s � α} for s ∈ N∗. The ensuing space is known as Baire space,
the countable product of N considered as a discrete space, and denoted as B.
It is an old observation due to L. E. J. Brouwer (see vol.1 of [TvD]) that every
(total) continuous map φ : B → N is induced (or better “realized”) by an
appropriately chosen α ∈ B in the sense that

φ(β) = n iff ∃k∈N.α(β(k)) = n+1 ∧ ∀`<k.α(β(`)) = 0

for all β ∈ B and n ∈ N. We write α φ as a shorthand for “α induces φ” or “α
realizes φ”. Obviously, an α realizes a total continuous φ iff for all β ∈ B there
exists a k ∈ N with α(β(k)) > 0. Such α are called neighbourhood functions iff,
moreover, from α(s) > 0 and s � s′ it follows that α(s) = α(s′).23 Obviously,
for every continuous φ one can find a neighbourhood function α with α φ and
every neighbourhood function induces a continuous φ. Notice, however, that
different neighbourhood functions may induce the same continuous functional.
We say that α ∈ B induces or realizes a continuous operator Φ : B → B
(notation: α Φ) iff λs.α(〈n〉∗s) λβ.Φ(β)(n) for all n ∈ N. Obviously, an
α induces a continuous operator Φ iff for all n ∈ N the function λs.α(n∗s) ∈ B
realizes a continuous operation from B to N.
Application in K2 is defined as

α·β ' γ iff ∀n.∃k. α(〈n〉∗β(k)) = γ(n)+1 ∧ ∀`<k. α(〈n〉∗β(`)) = 0

for α, β, γ ∈ B = |K2|. Notice that α realizes a continuous Φ : B → B iff α·β ↓
for all β ∈ B. But, of course, if α·β ↓ for some β it will not be the case in
general that α realizes a continuous operator Φ : B → B.
Now we sketch an argument why K2 is a pca. First observe that there is a

homeomorphism (·, ·) : B×B
∼=→ B. It can be shown that for K2 there holds an

analogue of Th.A.1(2).

Lemma 3.2. There is an υ ∈ B and a total continuous function σ : B×B → B
such that

23The set of neighbourhood functions can be defined inductively as the least subset K of B
such that

(1) λs.n+1 ∈ K for all n ∈ N and

(2) α ∈ K whenever α(〈〉) = 0 and λs.α(〈n〉∗s) ∈ K for all n ∈ N.

This is a useful observation as it allows us to prove a statement of the form ∀φ.A(φ) (where
φ ranges over continuous functionals from B to N) by induction over K: replace ∀φ.A(φ) by
an equivalent statement ∀α∈K.A∗(α) where A∗(α) is equivalent to A(φ) whenever α φ.
Notice, moreover, that K corresponds to the countably branching well-founded trees whose
leaves are labelled by natural numbers. For details see vol.1 of [TvD].

16

(1) υ·(α, β) ' α·β

(2) σ(α, β)·γ ' α·(β, γ)

for all α, β, γ ∈ B.

Proof. A lengthy and tedious programming exercise which does not provide
much insight.
For details see pp.74-75 of [Tr73] or [vOo] 1.4.3.
The idea is that one may define a primitive recursive predicate T ∗ and a prim-
itive recursive function U∗ such that (α·β)(x) = y iff ∃z. T ∗((α, β)(z), x, z) ∧
U∗(z) = y.
From this one can read off an υ satisfying (1).
A σ satisfying (2) can be constructed as follows

σ(α, β)(〈〉) = 0

σ(α, β)(〈x〉∗n) = y + 1

if ∃z ≤ lgth(n). T ∗((α, (β, fn))(z), x, z) ∧ U(z) = y

σ(α, β)(〈x〉∗n) = 0 otherwise.

where fn(i) = ni.

From Lemma 3.2(1) it follows that every polynomial over K2 in n variables
induces a continuous map from Bn ∼= B to B. From Lemma 3.2(2) (and Bn ∼= B)
it follows that for every polynomial t[x1, . . . , xn, x] there exists a polynomial
Λx.t[x1, . . . , xn, x] such that t[α1, . . . , αn, α] ' Λx.t[α1, . . . , αn, x]·α.
Thus, by Lemma 3.1 it follows that K2 is a pca.

The pca K2 is an abstraction of Kleene’s function realizability (see [KV]) in-
troduced for the purpose of extracting computational contents from proofs in
intuitionistic analysis. Like his number realizability he introduced his function
realizability as a syntactic translation. Function realizability does not validate
Church’s Thesis but instead the following two principles, namely Generalized
Continuity

GC (∀α.(A(α)→ ∃β.B(α, β)))→ ∃γ.∀α.(A(α)→ B(α, γ·α))

for almost negative A and Bar Induction

BI
(
∀α.∃n.P (α(n))

)
→
(
∀n.(P (n)→ ∀m.P (n∗m))

)
→
(
∀n.P (n)→ Q(n)

)
→
(
∀n. (∀m.Q(n∗〈m〉))→ Q(n)

)
→ Q(〈〉)

an induction principle for well-founded trees. A remarkable consequence of GC
is that all functions on the real numbers are continuous, called Brouwer’s Con-
tinuity Theorem (as he considered GC as a “logical” (in the sense of “evident”)
principle).

17

Example 3.5. (K2,eff)
The underlying set of K2,eff are the total recursive functions from N to N which
are closed under the application operation defined on B in Example 3.4. More-
over, as the υ and σ of Lemma 3.2 can be chosen as computable it follows that
K2,eff is a (sub-)pca of K2.
Notice the analogy with Example 3.3 where Pω contains a sub-pca Pωeff con-
sisting of the computable elements of Pω.

Example 3.6. (syntactic pca’s)
Last but not least there are pca’s of fairly syntactic nature.24

The simplest (total) pca’s in this vein are term models of Combinatory Logic
(see e.g. [HS]). The terms of combinatory logic are built from constants K and
S via a binary operation (denoted by juxtaposition). We write C for the ensuing
inductively defined set of terms. A congruence on C is an equivalence relation
∼ on C such that

t1 ∼ t2 implies t1s ∼ t2s and st1 ∼ st2

for all t1, t2, s ∈ C. A congruence ∼ on C is called a CL-theory iff Kt1t2 ∼ t1
and St1t2t3 ∼ t1t3(t2t3). One readily checks that for every CL-theory T the
quotient C/T gets a total pca when endowed with the application operation
[t]T ·[s]T = [ts]T choosing k = [K]T and s = [S]T .
Instead of combinatory logic one may consider untyped λ-calculus (see e.g. [HS]).
Let Λ be the set of λ-terms modulo α-conversion, i.e. capture-free renaming
of bound variables. A λ-theory is an equivalence relation ∼ on Λ such that
t1 ∼ t2 implies t1s ∼ t2s, st1 ∼ st2 and λx.t1 ∼ λx.t2 and (λx.t)s ∼ t[s/x].
Obviously, for every λ-theory T the set Λ/T gets a total pca when endowed
with the application operation t·s = [ts]T choosing k = [λx.λy.x]T and s =
[λx.λy.λz.xz(yz)]T .
Let Λ0 be the set of closed λ-terms. Then for every every λ-theory T the set
Λ0/T gives rise to a sub-pca of Λ/T .
The following λ-theories will be of interest later on: the least λ-theory ∼β and
so-called sensible λ-theories, i.e. theories identifying all unsolvable25 terms. The
most important instance of a sensible λ-theory is K∗, the maximal consistent
sensible λ-theory, equating all those terms t1 and t2 such that for all terms t,
tt1 is unsolvable iff tt2 is unsolvable.
A slightly more “realistic” (in the sense of closer to practice) syntactic pca are
LISP programs26 modulo observational equivalence, i.e. P1 ∼obs P2 iff for all
programs P it holds that PP1 ↓ iff PP2 ↓.

We conclude this chapter by establishing a couple of facts about the coding
capabilities of partial combinatory algebras.

24Though K1 and K2 are also fairly “intensional” as their elements can be thought of as
codes of algorithms for partial functions on N and B, respectively.

25a term is unsovable iff it does not reduce to a head normal form, i.e. leftmost-outermost
reduction does not terminate

26one could take any untyped functional programming language

18

For the rest of this chapter let A be an arbitrary, but fixed pca. We write A
as a shorthand for |A| and k and s for some choice of elements satisfying the
conditions of Def. 3.1.
In subsequent proofs we will often (implicitly) use the equality

(β∗) (Λx.t)a ' t[a/x] for all a ∈ A

which due to Lemma 3.1 holds in any pca. Notice that in general s↓ does not
imply (Λx.t)s ' t[s/x] unless every free occurrence of x in t is not within the
scope of a Λ-abstraction.27

Lemma 3.3. (Pairing and Booleans)

(1) There exist p, p0, p1 ∈ A such that

pab ↓ p0(pab) = a p1(pab) = b

for all a, b ∈ A.

(2) There exist true, false, cond ∈ A such that

cond a b ↓ cond a b true = a cond a b false = b

for all a, b ∈ A.

Proof. ad (1) : Put p = Λxyz.zxy, p0 = Λz.z(Λxy.x) and p1 = Λz.z(Λxy.y).
The claim then follows from (β∗).
ad (2) : Put true = λxy.x, false = Λxy.y and cond = Λxyz.zxy. The claim
follows again from (β∗).

In the following we will often write 〈a, b〉 for pab. We also write i as abbreviation
for skk and notice that i a = a for all a ∈ A.
Now we will show how natural numbers can be implemented within pca’s.

Definition 3.2. (Numerals)
With every natural number n we associate an element n ∈ A by recursion on n
in the following way

0 = 〈true, i〉 and n+1 = 〈false, n〉

We call n the numeral for n. ♦

Lemma 3.4. There exist succ, pred, isz ∈ A such that

succn = n+1 pred 0 = 0 predn+1 = n isz 0 = true iszn+1 = false

for all n ∈ N.

27This can be seen from the following counterexample (due to Longley, see [Lon]): let
t ≡ Λy.x and s = ss then (Λx.t)s = k(ss) whereas t[s/x] ≡ Λy.ss = s(ks)(ks). Obviously, the
problem is that in Λy.ss the term ss is treated as a term and not as the value it denotes.

19

Proof. Put succ = Λx.〈false, x〉, isz = p0 and pred = Λx. cond 0 (p1x) (iszx).
Using Lemma 3.3 one immediately verifies that the so defined elements satisfy
the required properties.

Theorem 3.1. (Fixpoint Operator)
There exists a fix ∈ A such that

fix f ↓ and fix f a ' f (fix f) a

for all f, a ∈ A.

Proof. Let fix = Λx.(Λyz.x(yy)z)(Λyz.x(yy)z). Let f ∈ A. We write χf for the
value of Λyz.f(yy)z. As fix f ' χfχf ' Λz.f(χfχf)z and Λz.f(χfχf)z ↓ we
have fix f ↓. Moreover, we have

fix f a ' (Λz.f(χfχf)z)a = f(χfχf)a ' f(fix f)a

for all a ∈ A.

Corollary 3.1. (Primitive Recursion Operator)
There is a rec ∈ A such that

rec a f 0 = a and rec a f n+1 ' f n (rec a f n)

for all a, f ∈ A and n ∈ N.

Proof. Define rec ≡ fix(Λr.Λxfn. condx (f (predn) (r x f (predn)) (iszn)). It is
a good exercise in using (β∗) to show that the so defined rec satifies the required
two properties.

These results show that a partial combinatory algebra actually gives rise to a
(kind of) untyped functional programming language supporting general recur-
sion, the basic data types of booleans and natural numbers and a conditional
(namely cond of Lemma 3.3).

20

4 Assemblies and Modest Sets

In this section we will introduce for every (weak) pca A a category Asm(A) of
assemblies over A which is a model of impredicative (intuitionistic) type theory
containing as full reflective subcategories both the category Set of classical sets
and the category Mod(A) of modest sets over A which can be considered as
the category of data types w.r.t. the notion of computability as given by the
(weak) pca A.

Definition 4.1. (assemblies and modest sets)
Let A be a (weak) pca. The category Asm(A) of assemblies over A has as
objects pairs X = (|X|, || · ||X) where |X| is a set and || · ||X is a mapping
associating with every x ∈ |X| a non-empty subset ||x||X of A. We also write
a X x instead of a ∈ ||x||X . The morphisms from X to Y in Asm(A) are
those maps f : |X| → |Y | for which there exists e ∈ A such that for every
x ∈ |X| and a ∈ ||x||X it holds that e·a ↓ and e·a ∈ ||f(x)||Y in which case we
say “e realizes f” or “e tracks f” and which we denote as e f . Composition
in and identities of Asm(A) are inherited28 from Set.
Let ∇ : Set ↪→ Asm(A) be the full and faithful functor sending a set S to ∇(S)
with |∇(S)| = S and ||s||∇(S) = A for all s ∈ S and ∇(f) = f : ∇(T) → ∇(S)
for f : T → S in Set.
An assembly X over A is a modest set (over A) iff x = y whenever ||x||X∩||y||X
is non-empty. We write Mod(A) for the full subcategory of Asm(A) on modest
sets over A and J : Mod(A) ↪→ Asm(A) for the obvious inclusion functor. ♦

Intuitively, morphism between assemblies X and Y are those maps between
the underlying sets |X| and |Y | which can be “implemented” or “tracked” or
“realized” by an algorithm operating on realizers instead of elements. The
intuition behind “modest sets” is that realizers determine uniquely the objects
they realize. Thus we have the following

Lemma 4.1. Let f, g : X → A be morphisms in Asm(A) with A ∈Mod(A).
If e f and e g then f = g. Thus, the collection Asm(X,A) together with
the assignment f 7→ {e ∈ A | e f} gives rise to a modest set usually denoted
as AX (c.f. Lemma 4.3).

Proof. Suppose e f and e g. Suppose x ∈ |X|. Then there exists a ∈ ||x||X .
Thus e·a ↓ with e·a ∈ ||f(x)||A and e·a ∈ ||g(x)||A from which it follows that
f(x) = g(x) since A is modest by assumption.

Next we will establish the many good properties that are satisfied by Asm(A)
and Mod(A). For explanation of basic categorical notions see [St2] or some of
the sources referred to in loc. cit.

Lemma 4.2. For every (weak) pca A the category Asm(A) has all finite limits.
Moreover Mod(A) is closed under finite limits taken in Asm(A).

28If a f : X → Y and b g : Y → Z then g ◦ f is realized by Λx. b·(a·x). Identity
morphisms in Asm(A) are realized by i = Λx.x.

21

Proof. A terminal object is given by the assembly 1 with |1| = {∗} and ||∗||1 =
|A|. Obviously 1 is modest. Let X and Y be assemblies over A. Their cartesian
product is given by the assembly X×Y whose underlying set is given by |X|×|Y |
and ||〈x, y〉||X×Y = {e ∈ |A| | p0e ∈ ||x||X ∧ p1e ∈ ||y||Y }. The first and
second projections are given by the maps π0 : X×Y → X : 〈x, y〉 7→ x and
π1 : X×Y → Y : 〈x, y〉 7→ y which are realized by p0 and p1, respectively.
That X×Y is modest if X and Y are modest can be seen as follows. Suppose
e X×Y 〈x, y〉 and e X×Y 〈x′, y′〉. Then p0e X x and p0e X x′ from which
it follows that x = x′ as X is assumed as modest. Similarly, one sees that y = y′.
Thus 〈x, y〉 = 〈x′, y′〉 as desired.
For f, g : X → Y in Asm(A) their equalizer is given by the assembly E whose
underlying set is given by |E| = {x ∈ X | f(x) = g(x)} and ||x||E = ||x||X and
the inclusion map e : E → X realized by i = Λx.x. From the construction of E
it is obvious that E is modest whenever X is modest.
The verification of the desired universal properties of the above constructions is
left to the reader.

Lemma 4.3. For every (weak) pca A the category Asm(A) is cartesian closed.
Moreover, for every X ∈ Asm(A) and A ∈Mod(A) we have AX ∈Mod(A).

Proof. Let X and Y be assemblies over A. Their exponential Y X = [X→Y]
is given by the assembly with underlying set Asm(A)(X,Y) and ||f ||[X→Y] =
{e ∈ A | e f}. The evaluation map evX,Y : [X→Y]×X → Y : (f, x) 7→ f(x)
is realized by the algorithm Λx.p0x(p1x) ∈ A.
For showing that evX,Y satisfies the universal property required for an expo-
nential suppose e f : Z×X → Y . We have to show that there exists a unique
g ∈ Asm(A)(Z, [X→Y]) with evX,Y ◦ (g×idX) = f . Thus g(z)(x) = f(z, x)
determining g uniquely. For existence of g as morphism of assemblies we just
have to check that the map g is tracked by some element of A. Well, one easily
checks that Λx.Λy.e(pxy) g as if c z and a x then pca 〈z, x〉 and thus
e(pca) f(z, x) = g(z)(x) as desired.

Notice that if A is only a weak pca then (Λx.p0x(p1x))(pea) may terminate
even if e does not realize an f : X → Y or a does not realize an x ∈ |X|.
This, however, is not a problem because for (Λx.p0x(p1x)) evX,Y it suffices
that p0c(p1c) f(x) whenever p0c [X→Y] f and p1c X x and nothing is
required for the case that this precondition is not satisfied. Similarly, if e f
then (Λx.Λy.e(pxy))ca may terminate even if c or a do not realize an element
of |Z| or |X|, respectively. These considerations demonstrate why it suffices to
assume that A is only a weak pca.

Next we show that Mod(A) and Set are full reflective subcategories of Asm(A).

Theorem 4.1. For a (weak) pca A the full and faithful functors ∇ : Set ↪→
Asm(A) and J : Mod(A) ↪→ Asm(A) have left adjoints. Thus Set and
Mod(A) appear as full reflective subcategories of Asm(A).

22

Moreover, a left adjoint of ∇ is given by the global sections functor Γ = Asm(A)(1,−) :
Asm(A) → Set which is isomorphic to the forgetful functor |−| : Asm(A) →
Set which is obviously faithful. Thus Asm(A) and Mod(A) are well-pointed.

Proof. As Asm(A)(1, X) ∼= |X| and

Asm(A)(1, X)
∼=- |X|

Asm(A)(1, Y)

Asm(A)(1, f)
? ∼=- |Y |

|f |
?

commutes for all f : X → Y in Asm(A) it follows that the global sections
functor Γ = Asm(A)(1,−) is faithful and accordingly Asm(A) is well-pointed.
As 1 is modest Mod(A) is well-pointed, too.
From now on we treat Γ and |−| as identical. For X ∈ Asm(A) the map
ηX : |X| → |∇(Γ(X))| : x 7→ x is realized e.g. by Λx.x. Suppose f : X → ∇(S).
Let g : Γ(X) → S : x 7→ f(x) in Set. Obviously, we have ∇(g) ◦ ηX = f . As
the underlying map of ηX is onto and ∇ is (full and) faithful it follows that g is
actually the unique map with ∇(g) ◦ ηX = f . Thus Γ a ∇ as desired.
Let X ∈ Asm(A). Define ∼ as the least equivalence relation on |X| such
that x ∼ x′ whenever a ∈ ||x||X ∩ ||x′||X for some a ∈ A. Let M(X) be the
assembly with |M(X)| = |X|/∼ and || [x]∼ ||M(X) =

⋃
x′∈[x]∼

||x′||X . The map

ηX : |X| → |M(X)| : x 7→ [x]∼ is realized by Λx.x and thus ηX : X → M(X) is a
morphism of assemblies. Suppose A ∈Mod(A) and f : X → J(A). Let e f .
If a ∈ ||x||X ∩ ||x′||X then ea ∈ ||f(x)||A ∩ ||f(x′)||A and thus f(x) = f(x′) as
A is modest by assumption. Thus f(x) = f(x′) whenever x ∼ x′. Accordingly,
the map g : |M(X)| → |A| : [x]∼ 7→ f(x) is well defined and realized by any
realizer for f . We have f = g ◦ ηX and g is unique with this property since
the underlying map of ηX is onto. Thus J has a left adjoint M whose unit at
X is given by ηX . For f : X → Y the map M(f) is defined uniquely by the
requirement M(f) ◦ ηX = ηY ◦ f .

Next we characterize monomorphisms in Asm(A) and Mod(A).

Lemma 4.4. Let A be a (weak) pca. Then a map f : X → Y in Asm(A) is
monic in Asm(A) iff its underying map is one-to-one and a map f : A→ B in
Mod(A) is monic in Mod(A) iff its underlying map is one-to-one.

Proof. If the underlying map of f is one-to-one then f is obviously monic in
Asm(A). Suppose f : X → Y is monic in Asm(A) and f(x) = f(x′). Let g
and g′ be the maps from 1 to X with g(∗) = x and g′(∗) = x′, respectively.
Then f◦g = f◦g′ and thus g = g′ (as f is monic by assumption) from which it
follows that x = x′.
This argument goes through for Mod(A) as well since 1 is modest.

Next we consider and characterize the particularly nice class of regular monos,
i.e. those monos which appear as equalizers.

23

Lemma 4.5. Let A be a (weak) pca. Then a mono m : X → Y in Asm(A) is
regular iff there exists e ∈ A such that ea ∈ ||x||X whenever a ∈ ||m(x)||Y .

Proof. First notice that the characterizing condition is stable under isomor-
phism.
The equalizers constructed in the proof of Lemma 4.2 obviously satisfy the
characterizing property (take Λx.x for e).
Suppose m : X � Y and e ∈ A as required by the characterizing condition.
W.l.o.g. suppose |X| ⊆ |Y | and m(x) = x for all x ∈ |X|. Let f, g : Y → ∇(2)
with f constantly 0 and g(y) = 0 iff y ∈ X. We show that m is an equalizer
of f and g. Suppose h : Z → Y with fh = gh. Then Γ(h) : |Z| → |Y | factors
through |X|. Let k : Z → X be defined as k(z) = h(z) for all z ∈ |Z|. Let e′ h.
If a ∈ ||z||Z then e′a ∈ ||h(z)||Y and also e(e′a) ∈ ||k(z)||X as m(k(z)) = h(z).
Thus, we have Λx.e(e′x) k, i.e. k : Z → X with mk = h. Uniqueness of k
follows from m being monic.

It is obvious from this characterization that in Asm(A) regular monos are closed
under composition. Moreover, one can show easily (exercise!) that regular
monos are stable under pullbacks along arbitrary morphisms.

Lemma 4.6. If m : X → A is a regular mono in Asm(A) and A is modest
then m is a regular mono in Mod(A).

Proof. It is easily shown (exercise!) that X is modest as well.
W.l.o.g. assume that |X| ⊆ |A| and m(x) = x. From Lemma 4.5 we know that
there is an e ∈ A such that ea ∈ ||x||X whenever a ∈ ||m(x)||A. Let B be
the modest set with |B| = {0, 1}×(|A|\|X|) ∪ {0}×|X| and || · ||B defined as
follows: ||〈0, x〉||B = {a ∈ A | p0a ∈ {true, false} ∧ p1a ∈ ||x||A} for x ∈ |X|
and ||〈0, y〉||B = {a ∈ A | p0a = true ∧ p1a ∈ ||y||A} and ||〈1, y〉||B = {a ∈
A | p0a = false ∧ p1a ∈ ||y||A} for y ∈ |A|\|X|. Let f and g be the morphisms
from A to B realized by Λx.p truex and Λx.p falsex, respectively. We show that
m is an equalizer of f and g. Obviously, for y ∈ |A| we have f(y) = g(y) iff
y ∈ |X|. Thus fm = gm. Suppose h : C → A in Mod(A) with fh = gh.
Let k : |C| → |X| : z 7→ h(z). As in the proof of Lemma 4.5 one shows that
Λx.e(e′x) k where e′ h. Thus k is a morphism in Mod(A) with mk = h
and k is unique with this property as m is monic.
Thus, we have exhibited m as equalizer of f and g in Mod(A) as desired.

Again the regular monos in Mod(A) are stable under composition and arbitrary
pullbacks.

Now we can characterize epi(morphism)s in Asm(A) and Mod(A).

Lemma 4.7. Let A be a (weak) pca. A morphism f in Asm(A) or Mod(A)
is epic iff its underlying map |f | is onto.

Proof. Obviously, if |f | is onto then f is epic as both Asm(A) and Mod(A)
are well-pointed.

24

For the reverse direction suppose that f : X → Y is epic in Asm(A) or Mod(A).
Let Z be the assembly with |Z| = {f(x) | x ∈ |X|} and ||z||Z = ||z||Y for z ∈ |Z|.
Let m be the inclusion of |Z| into |Y | giving rise to the regular monomorphism
m : Z � Y realized by i. Obviously Z is modest whenever Y is modest. Let
e : X � Z with e(x) = f(x) for x ∈ |X| (e is realized by any realizer for f).
Obviously, we have f = me. As m is regular there are morphisms g, h : Y →W
such that m is an equalizer of g and h. Due to Lemma 4.6 the maps g and h can
be chosen from Mod(A) provided Y is in Mod(A). As gf = gme = hme = hf
and f is epic it follows that g = h and thus m is an isomorphism. Then |m|
is an isomorphism from which it follows that |Z| = |Y |. Thus |f | is onto as
desired.

Next we discuss colimits. For that purpose we introduce some notation. For
sets I0 and I1 their disjoint union is given by I0 + I1 = {0}×I0 ∪ {1}×I1. For
i=0, 1 we write ιi : Ii → I0 + I1 for the map with ιi(z) = 〈i, z〉, i.e. ιi is the
inclusion of the i-th summand into the sum I0 + I1.

Lemma 4.8. For every (weak) pca A the categories Asm(A) and Mod(A)
have finite colimits which are preserved by J : Mod(A) ↪→ Asm(A).

Proof. Let X and Y be assemblies over A. Then their sum is given by the
assembly X+Y with |X+Y | = |X| + |Y |, ||ι0(x)||X+Y = {p true a | a ∈ ||x||X}
for all x ∈ |X| and ||ι1(y)||X+Y = {p false b | b ∈ ||y||Y } for all y ∈ |Y |. The
maps ι0 : X → X+Y and ι1 : X → X+Y are realized by Λx.p truex and
Λy.p false y, respectively.
For showing that ι0 and ι1 satisfy the desired universal property suppose that
f : X → Z and g : Y → Z are morphisms in Asm(A). That there exists a
unique morphism [f, g] : X+Y → Z with [f, g] ◦ ι0 = f and [f, g] ◦ ι1 = g can be
seen as follows. Put [f, g](ι0(x)) = f(x) for x ∈ |X| and [f, g](ι1(y)) = g(y) for
y ∈ |Y |. As ι0 and ι1 are jointly surjective as maps of their underlying sets it
is immediate that the so define [f, g] is the unique candidate. Suppose f and g
are realized by e0 and e1, respectively. As true = Λx.Λy.x and false = Λx.Λy.y
it is immediate that [f, g] is realized by Λz.p0ze0e1(p1z).
Obviously X+Y is modest if X and Y are modest.
The empty sum, i.e. the initial object, is given by the assembly 0 whose under-
lying set is empty. Obviously, 0 is a modest set.
Suppose f, g : X → Y in Asm(A). Let ∼ be the least equivalence relation on
|Y | such that f(x) ∼ g(x) for all x ∈ |X|. We define Q as the assembly with
|Q| = |Y |/∼ and || [y]∼ ||Q =

⋃
y′∈[y]∼

||y′||Y . Obviously, Q is modest if Y is

modest. Let e : Y → Q be the map sending y ∈ |Y | to e(y) = [y]∼. It is a
morphism in Asm(A) since it is realized by Λx.x. Suppose h : X → Z with
hf = hg. Then every k : Q → Z with h = ke has to satisfy k([y]∼) = h(y).
As hf = hg and the underlying map of e is onto the map k is well-defined
and unique. Every realizer for h is also a realizer for k. Thus Asm(A) has
coequalizers which stay within Mod(A) if Y is in Mod(A).

Thus Asm(A) and Mod(A) have coequalizers of all kernel pairs. Moreover, as
we shall show next they are so-called regular categories.

25

Recall that in a category C a morphism e : X → Q is a regular epi(morphism)
iff it appears as coequalizer of some pair f, g : Y → X in C. If C has finite limits
then e is a regular epi iff e is a coequalizer of its kernel pair (exercise!).

Definition 4.2. (regular category)
A category C is called regular iff C has finite limits and coequalizers of kernel
pairs and regular epis are stable under pullbacks along arbitrary morphisms in
C. ♦

Lemma 4.9. Let C be a regular category and f : X → Y a morphism in C. Let
k0, k1 : R → X be a kernel pair of f and e : X � Q a coequalizer of k0 and
k1. Then the unique morphism m : Q→ Y with m ◦ e = f is a monomorphism.
Thus k0, k1 is also a kernel pair of e.
Moreover, whenever f = m′ ◦ f ′ for some mono m′ : Z � Y then there exists a
unique mono n making the diagram

X
f ′- Z

Q

e
??
-

m
-
n

-

Y

m′

?

?

commute. Thus m is the least subobject of Y through which f factors.

Proof. For showing that m : Q → Y is monic suppose m ◦ g = m ◦ h for
g, h : V → Q. Consider the pullback

W
a - V

X×X

〈p0, p1〉
?

e×e
- Q×Q

〈g, h〉
?

As
fp0 = mep0 = mga = mha = mep1 = fp1

there is a unique b : W → R with 〈k0, k1〉 ◦ b = 〈p0, p1〉. Thus we have

ga = ep0 = ek0b = ek1b = ep1 = ha

from which it follows that g = h if we can show that a is epic. As

X×X
e×X- Q×X Q×X

Q×e- Q×Q

X

π0
?

e
- Q

π0
?

X

π1
?

e
- Q

π1
?

26

are pullbacks and regular epis are stable under pullbacks it follows that e×X
and Q×e are also regular epis. As e×e = (Q×e) ◦ (e×X) it follows that a is
a composite of pullbacks of regular epis. Thus a is a composite of regular epis
and, therefore, epic itself as desired.
That f and e have the same kernel pair follows from the observation that for
all h0, h1 : U → X we have eh0 = eh1 iff meh0 = meh1 iff fh0 = fh1 (as m is
monic).
Now suppose f = m′f ′ for some mono m′ : Z � Y . Then f ′ coequalizes
the kernel pair of f as from m′f ′k0 = fk0 = fk1 = m′f ′k1 it follows that
f ′k0 = f ′k1. Thus, there exists a unique n with f ′ = ne. Thus, we have also
m′ne = m′f ′ = f = me from which it follows that m′n = m as e is epic. Thus
n is monic as well.

The regular epimorphisms in Asm(A) and Mod(A) can be characterized as
follows.

Lemma 4.10. Let A be a (weak) pca. Then f : X → Y is a regular epi in
Asm(A) iff there is an e ∈ A such that for all y ∈ |Y | and a ∈ ||y||Y there is
an x ∈ |X| with f(x) = y and e·a ∈ ||x||X . This condition characterizes also
regular epis in Mod(A).

Proof. Suppose f : X → Y is a regular epi in Asm(A). Let Z be the assembly
with |Z| = {f(x) | x ∈ |X|} and ||z||Z =

⋃
x∈f−1({z}) ||x||X for all z ∈ |Z|. Let

f ′ : X → Z with f ′(x) = f(x) which is realized by Λx.x. Then the inclusion
m : Z ↪→ Y is realized by any realizer for f . Let k0, k1 be a kernel pair of f .
Notice that f is a coeqalizer of k0 and k1 as f is a regular epi by assumption.
As m ◦ f ′ ◦ k0 = f ◦ k0 = f ◦ k1 = m ◦ f ′ ◦ k1 and m is monic it follows that
f ′◦k0 = f ′◦k1. Thus, there exists a unique morphism g : Y → Z with f ′ = g◦f .
Let e g. Suppose y ∈ |Y | and a ∈ ||y||Y . Then g(y) ∈ |Z| and e·a ∈ ||g(y)||Z .
Thus, there exists x ∈ |X| with e·a ∈ ||x||X and g(y) = f(x). As f is epic and
m ◦ g ◦ f = m ◦ f ′ = f it follows that m ◦ g = idY . Thus y = m(g(y)) = g(y)
and, accordingly, we have y = g(y) = f(x) as desired.
Now assume that the right hand side of the claimed equivalence holds for f .
First of all notice that this implies that f : |X| → |Y | is onto. We will show
that f is actually a coequalizer of its kernel pair k0, k1, i.e. that f is a regular
epi. Suppose g : X → Z with g ◦ k0 = g ◦ k1. Then g(x) = g(x′) whenever
f(x) = f(x′). As f is epic we can define a map h : |Y | → |Z| by sending
y ∈ |Y | to g(x) for some x ∈ f−1({y}). Thus h(f(x)) = g(x) for all x ∈ |X|.
As f : |X| → |Y | is onto h is the unique candidate for a morphism h : Y → Z
with g = h ◦ f . It remains to show that h is realizable. Let e′ g then
Λx.e′(ex) h as if a Y y then ea X x for some x ∈ |X| with y = f(x) and
thus e′(ea) g(x) = h(y).
By inspection of this proof since Z is modest if X is modest it follows that the
above characterization applies also to Mod(A).

Furthermore, Lemma 4.10 gives rise to

27

Lemma 4.11. In Asm(A) and Mod(A) regular epis are stable under compo-
sition and pullbacks along arbitrary morphisms.

Proof. Straightforward exercise!

Now we are ready to prove that

Theorem 4.2. For every (weak) pca A the categories Asm(A) and Mod(A)
are regular.

Proof. By Lemma 4.2 Asm(A) has finite limits. As by Lemma 4.8 Asm(A)
has all finite colimits it has in particular coequalizers of kernel pairs. As by
Lemma 4.11 regular epis are stable under arbitrary pullbacks it follows that
Asm(A) is a regular category.
This argument restricts to Mod(A) and thus Mod(A) is regular as well.

Next we discuss how Asm(A) and Mod(A) give rise to models of first order
intuitionistic logic.

Definition 4.3. (subobject fibration)
For every X ∈ Asm(A) let Sub(X) be the preorder of subobjects of X where
for m : P � X and m′ : P ′ � X we have m ≤X m′ iff there exists a unique
n : P → P ′ with m′n = m.
For f : Y → X in Asm(A) let Sub(f) : Sub(X)→ Sub(Y) be the map sending
m ∈ Sub(X) to f∗m ∈ Sub(Y), the pullback of m along f

f∗P - P

Y

f∗m
?

?

f
- X

m
?

?

Obviously Sub(f) = f∗ is order preserving.
Although for g : Z → Y it need not be the case that g∗f∗m = (fg)∗m it holds
nevertheless that g∗f∗m ∼= (fg)∗m which suffices for our purposes.
Thus, we may consider Sub as a pseudo-functor29 from Asm(A)op to PreOrd,
the category of preorders and monotone maps. ♦

Theorem 4.3. (quantification for the subobject fibration)
For every f : Y → X in Asm(A) the monotone map f∗ : Sub(X) → Sub(Y)
has a left adjoint ∃f and a right adjoint ∀f , i.e. ∃f a f∗ a ∀f .
These quantifiers satisfy the so-called Beck-Chevalley condition (BC), i.e. g∗∃fm ∼=
∃pq∗m and g∗∀fm ∼= ∀pq∗m for all pullbacks

U
q- X

Z

p
?

g
- Y

f
?

29Here “pseudo” means that composition is preserved only up to isomorphism. For details
see vol.1 of [Bor].

28

in Asm(A) and m ∈ Sub(X).

Proof. First we show the existence of ∃f a f∗. For a subobject m : P � X we
construct ∃fm as follows. Let e : P → Q be the coequalizer of the kernel pair
of fm : P → Y and ∃fm the unique map n : Q → Y with fm = ne. From
Lemma 4.9 it follows that n is monic and, moreover, that n ≤Y n′ whenever fm
factors through n′, i.e. fm = n′f ′ for some f ′. Obviously fm factors through n′

iff m ≤X f∗n′. On the other hand if ∃fm ≤Y n′, i.e. n′n′′ = n for some n′′, then
fm = ne = n′n′′e, i.e. fm factors through n′ (via n′′e), and thus m ≤x f∗n′.
Thus, we have ∃fm ≤Y n′ iff m ≤X f∗n′ for all n′ ∈ Sub(Y), i.e. ∃f a f∗.
The Beck-Chevalley condition holds for existential quantification as monos and
regular epis are stable under pullbacks in Asm(A).
From the explicit construction of coequalizers in the proof of Lemma 4.8 it
follows that ∃fm is (isomorphic to) the subobject n : Q � Y where |Q| =
{f(x) | x ∈ |P |} (assuming that |m| : |P | ↪→ |X|), n(y) = y and ||y||Q =⋃
x∈|P |∩f−1(y) ||x||P .

Next we show that f∗ has a right adjoint ∀f . For m ∈ Sub(X) we define a map
qm : |Y | → P(A) with e ∈ qm(y) iff for all x ∈ f−1(y) and for all a ∈ ||x||X there
is a (unique) z ∈ |P | with m(z) = x and ea ∈ ||z||P . Let Q be the assembly
with |Q| = {y ∈ |Y | | qm(y) 6= ∅} and ||y||Q = {pab | a ∈ ||y||Y and b ∈ qm(y)}
and n : Q� Y be the mono with n(y) = y which is realized by p0. It is tedious,
but straightforward to check that n′ ≤Y n iff f∗n′ ≤X m for all n′ ∈ Sub(Y).
Thus we may take n for ∀fm.
The Beck-Chevalley condition for universal quantification follows from that for
existential quantification (exchanging the roles of f and g and p and q, respec-
tively) because f∗∃g a g∗∀f and ∃qp∗ a ∀pq∗.

For morphisms f : X → Y in Asm(A) the functors f∗ : Sub(Y) → Sub(X)
appear as restriction of pullback functors f∗ : Asm(A)/Y → Asm(A)/X. Now
Theorem 4.3 can be strengthened in the sense that these pullback functors f∗

have left and right adjoints Σf and Πf , respectively, satisfying a Beck-Chevalley
condition.

Theorem 4.4. For every morphism f : X → Y in Asm(A) the pullback functor
f∗ : Asm(A)/Y → Asm(A)/X has a left adjoint Σf and a right adjoint Πf .
Moreover, these adjunctions satisfy the Beck-Chevalley condition in the sense
that for every pullback

U
q- X

Z

p
?

g
- Y

f
?

the canonical natural transformations σ : Σpq
∗ → g∗Σf and τ : g∗Πf → Πpq

∗

29

as given by

q∗
q∗η−→ q∗f∗Σf

q∗ −→ p∗g∗Σf

Σpq
∗ σ−→ g∗Σf

q∗f∗Πf
q∗ε−→ q∗

p∗g∗Πf −→ q∗

g∗Πf
τ−→ Πpq

∗

are isomorphisms.

Proof. The left ajoints Σf send objects h : V → X of Asm(A)/X to Σfh =
fh and morphisms k : h′ → h in Asm(A) to Σf (k:h′→h) = k : fh′ → fh
in Asm(A)/Y . That Σf ` f∗ can be seen from the natural correspondence

between k : Σfh→ h′ and k̃ : h→ f∗h′ as depicted in the diagram

·

· -

k̃
-

·

k

-

X

f∗h′

?

f
-

h

-

Y

h′

?

A straightforward diagram chasing shows that σ is even the identity.
The right adjoint Πf to f∗ is constructed as follows. Let h : V → X. We
construct Πfh : P → Y as follows. Let P0 be the set of all pairs 〈y, s〉 such that
y ∈ |Y | and s : f−1(y)→ |V | such that h(s(x)) = x for all x ∈ f−1(y). We say
that e 〈y, s〉 iff p0e Y y, p1e↓ and p1ea V s(x) whenever a X x ∈ f−1(y).
Then we define P as the assembly where |P | consists of those 〈y, s〉 ∈ P0 with
e 〈y, s〉 for some e ∈ |A| and ||〈y, s〉||P = {e ∈ |A| | e 〈y, s〉}. Finally
Πfh : P → Y sends 〈y, s〉 to y and is thus realized by p0. The counit εh :
f∗Πfh → h is given by evaluation, i.e. εh(〈x, 〈f(x), s〉〉) = s(x). It is realized
by Λe.p1(p1e)(p0e).
Showing that Beck-Chevalley condition holds for Π we leave as an exercise to
the inclined reader.

Theorem 4.4 provides the basis for showing how Martin-Löf’s dependent type
theory can be interpreted in categories of assemblies. Of course, dependent sum
types are interpreted by Σ and dependent product types are interpreted by Π.
For more details see [St, Jac]. Notice also that Theorem 4.4 restricts to Mod(A)
and thus Martin-Löf type theory can be interpreted within the comparatively
small model of modest sets (see [Bau] for details).

After having established quantification for Asm(A) in Theorem 4.3 we now
show that we can interpret propositional connectives.

30

Theorem 4.5. For every X in Asm(A) the preorder Sub(X) is a Heyting
(pre)lattice (i.e. finitely complete and cocomplete and cartesian closed as a cat-
egory) and for every morphism f : Y → X in Asm(A) the reindexing map
f∗ : Sub(X)→ Sub(Y) preserves this structure.

Proof. Empty meets and joins in Sub(X) are given by idX : X → X and 0→ X,
respectively (where 0 is the initial object). For constructing binary meets and
joins suppose m0 : P0 � X and m1 : P1 � X are monos. Their meet is given
by the pullback

P0 ∧ P1
- - P1

P0

?

?

-
m0

- X

m1

?

?
-

m
0 ∧
m

1 -

Let m ◦ e = [m0,m1] where e is a regular epi and m is a mono. Then mi ≤X m
via e ◦ ιi. If n : Q � X with mi ≤X n for i = 0, 1. Let hi be the unique
map with n ◦ hi = mi. Then n ◦ [h0, h1] = [m0.m1] from which it follows by
Lemma 4.9 that m ≤X n. Thus we have shown that m is a supremum of m0

and m1.
That the exponential m0→m1 is given by ∀m0m

∗
0m1 can be seen as folllows.

For m ∈ Sub(X) we have m ≤X m0→m1 iff m∗0m ≤P0 m
∗
0m1 iff m0 ◦m∗0m ≤X

m0 ◦m∗0m1 iff m0 ∧m ≤X m0 ∧m1 iff m0 ∧m ≤X m1.
That f∗ : Sub(Y)→ Sub(X) preserves (finite) meets and joins follows from the
fact that (by Theorem 4.3) the map f∗ has a left and a right adjoint.
For showing that f∗ preserves Heyting implication (i.e. exponentiation) instan-
tiate the Beck-Chevalley condition for ∀ by the pullback

·
q- P0

Y

p
?

?

f
- X

m0
?

?

from which it follows that

f∗(m0→m1) = f∗∀m0
m∗0m1

∼= ∀pq∗m∗0m1
∼= ∀pp∗f∗m1 = f∗m0→f∗m1

since p = f∗m0.

Theorems 4.3 and 4.5 guarantee that one may interpret first order intuitionistic
logic in Asm(A) and also in Mod(A) because Theorems 4.3 and 4.5 restrict
to Mod(A) (for details see [Bau]). Equality predicates on X are interpreted as
δX = 〈idX , idX〉 ∈ Sub(X×X).
In Asm(A) we can also interpret higher order intuitionistic logic (to some ex-
tent) because there is a generic mono in Asm(A).

31

Theorem 4.6. Let Prop = ∇(P(|A|)) and Tr be the assembly with |Tr| =
P(A) \ {∅} and ||p||Tr = p for all p ∈ |Tr|. Further let tr : Tr � Prop be the
inclusion of |Tr| into P(A). This monomorphism tr : Tr � Prop is generic in
the sense that for every mono m : P � X there exists a map p : X → Prop with

P - Tr

X

m
?

?

p
- Prop

tr
?

?

which, however, in general is not unique with this property.

Proof. For a subobject m : P � X an appropriate p : X → Prop is given by
p(x) = {e ∈ |A| | ∃z ∈ m−1(x). e ∈ ||z||P }.

The mono m = id1 : 1 � 1 is isomorphic to p∗tr for all p : 1 → Prop with
p(∗) 6= ∅. Thus, in general there is not a unique p with m ∼= p∗tr. This
argument just shows that the particular tr as defined above is not a subobject
classifier.
That there cannot exist any subobject classifier in Asm(A) for nontrivial A
can be seen quite easily as follows. If Asm(A) had a subobject classifier then
Asm(A) were a topos (as it has finite limits and is cartesian closed). This,
however, is impossible as Asm(A) is not balanced because the reflection map
η2 : 2→ ∇(Γ(2)) is monic and epic but not an isomorphism.
There cannot exist a generic mono in Mod(A) for nontrivial A as the assembly
∆(A) with |∆(A)| = |A| and ||a||∆(A) = {a} has at least 2|A| subobjects whereas
there are at most |A| morphisms from ∆(A) to Prop if Prop were modest.

Intuitionistic higher order logic can be interpreted in Asm(A) as follows. For
every assembly X let PropX be the type of predicates on X. The elementhood
predicate ∈X�X×PropX is obtained as pullback of the generic mono tr along
ev ◦ 〈π2, π1〉. Obviously, for every r : R � X×Y there exists a map ρ : Y →
PropX such that

R - ∈X

X×Y

r
?

?

X×ρ
- X×PropX

?

?

which guarantees that the comprehension axiom of higher order logic is validated
by its interpretation in Asm(A).

From Theorems 4.5 and 4.6 it follows that there are maps >,⊥ : 1→ Prop and
∧,∨,→ : Prop× Prop→ Prop such that

(1) idX ∼= (>◦!X)∗tr and 0 � X is isomorphic to (⊥◦!X)∗tr

(2) p∗tr2 q∗tr ∼= (2 ◦ 〈p, q〉)∗tr for all p, q : X → Prop and 2 ∈ {∧,∨,→}

32

i.e. all propositional connectives can be expressed as operations on Prop in
Asm(A).
For sake of convenience we explicitate canonical choices of these operations,
namely

> = |A| and ⊥ = ∅

p ∧ q = {〈a, b〉 | a ∈ p and b ∈ q}

p ∨ q = {〈true, a〉 | a ∈ p} ∪ {〈false, b〉 | b ∈ q}

p→ q = {e ∈ |A| | ∀a ∈ p. a ∈ p⇒ e·a ∈ q}

for p, q ∈ P(A), which make clear the connection to traditional realizability
interpretations.
But quantifiers can also be “internalized” as follows. For every X ∈ Asm(A)
there are morphisms ∃X ,∀X : PropX → Prop such that for r : Y × X → Prop
we have (QX ◦ λ(r))∗Tr ∼= ∀π(r∗Tr) for Q ∈ {∃,∀}. Explicitly these internal
quantifiers are given by

∃X(p) = {〈a, b〉 | a X x and b ∈ p(x) for some x ∈ |X|}

and
∀X(p) = {e ∈ A | ea ∈ p(x) whenever a X x}

for p : |X| → P(A).

One can show that the interpretation of higher order intuitionistic logic in
Asm(A) validates the Axiom of Unique Choice (AUC)

∀R ∈ PropX×Y
(
∀x:X.∃!y:Y.R(x, y)→ ∃f :Y X .∀x:X.R(x, f(x))

)
for all X,Y ∈ Asm(A). However, in general the Axiom of Choice (AC) is not
validated by interpretation in Asm(A). For example Asm(K1) validates

∀f :NN .∃n:N.{n} = f

but not
∃F :NNN

.∀f :NN .{F (f)} = f

as otherwise equality of total recursive functions were decidable (see [Ro]).

Although the extensionality principle for functions, i.e.

∀f, g:Y X .
(
∀x:X.f(x) = g(x)

)
→ f = g

holds in arbitrary realizability models the extensionality principle for predicates,
i.e.

∀P,Q ∈ PropX .
(
∀x:X.P (x)↔ Q(x)

)
→ P = Q

fails for nontrivial A because it entails that tr : Tr � Prop is a subobject
classifier.

33

Thus it may appear as desirable to enlarge Asm(A) to a topos RT(A), the
so-called realizability topos over A. The traditional construction of realizability
toposes will be presented in the next section. It is not based on Asm(A) and
rather identifies Asm(A) as a certain full subcategory of RT(A), namely that
of the so-called ¬¬-separated objects.
An alternative construction of RT(A) from Asm(A) is by “adding quotients”
(see [CFS]). The new objects are pairs (X,EX) where X is an object of Asm(A)
and EX�X×X is an equivalence relation on X. The morphisms from (X,EX)
to (Y,EY) will be those relations F�X×Y validating the requirements

F (x, y) ∧ EX(x, x′) ∧ EY (y, y′)→ F (x′, y′)

F (x, y) ∧ F (x, y′)→ EY (y, y′)

∀x:X.∃y:Y.F (x, y)

of congruence (w.r.t. EX and EY), single-valuedness and totality, respectively.
Composition of these morphism is given by ordinary relational composition, i.e.
(G◦F)(x, z) ≡ ∃y:Y.F (x, y)∧G(y, z), and the identity on (X,EX) is given by EX
itself. Then it is a tedious, but straightforward task to verify that the ensuing
category obtained by “adding quotients” is actually a topos. The subobject
classifier Ω will be provided by (Prop,↔).
Notice that this construction can be considered as a logical interpretation of
higher order intuitionistic logic with extensionality principle for predicates in
higher order intuitionistic logic without this principle.

We conclude this section with a remark on classical logic within Asm(A). It is
an easy exercise(!) to show that the regular monos P � X are precisely those
subobjects of X for which ∀x:X.¬¬P (x)→P (x) holds in Asm(A). Thus, the
regular monos into X can be considered as the classical predicates from which
it follows that they satisfy the usual closure properties as known from the ¬¬-
translation30. It is shown easily (exercise) that ∇(0 : 1 → 2) classifies regular
monos in Asm(A), i.e. that ∇(0) is a regular mono and that for every regular
mono m : P � X there exists a unique map χ : X → ∇(2) with

P - ∇(1)

X

m
?

?

χ
- ∇(2)

∇(0)
?

?

namely χ(x) = 0 iff x = m(z) for some z ∈ |P |.

30of classical into intuitionistic logic as devised by Gödel and Gentzen independently in the
early 1930ies

34

5 Realizability Triposes and Toposes

In this section for every (weak) pca A we introduce the realizability tripos H(A)
and the realizability topos RT(A) following the original approach as can be
found in [HJP] (and implicitly in [Hyl]).

Definition 5.1. (realizability tripos)
Let A be a (weak) pca. Then the functor H(A) : Setop → PreOrd is defined
as follows. For every I ∈ Set let H(A)(I) be the preorder (P(A)I ,`I) where
φ `I ψ iff there exists e ∈ A such that ∀i∈I.∀a∈φ(i). ea ∈ ψ(i) (where ea ∈ ψ(i)
means that ea is defined and an element of ψ(i)). For f : J → I in Set the
map H(A)(f) : P(A)I → P(A)J sends φ to H(A)(f)(φ) = f∗φ = φ ◦ f . ♦

Using notation from the previous section we have φ `I ψ iff
⋂
i∈I φ(i)→ψ(i) is

nonempty. Thus, obviously, from φ `I ψ it follows that f∗φ `J f∗ψ. Moreover,
we have id∗φ = φ and g∗f∗φ = (fg)∗φ from which it follows that H(A) is
actually a functor.
Now we will show (in several steps) that H(A) provides a model for higher order
intuitionistic logic. For the rest of this section let A be an arbitrary, but fixed
(weak) pca.

Lemma 5.1. All H(A)(I) are Heyting prelattices and all reindexing functions
H(A)(f) : H(A)(I)→ H(A)(J) preserve this structure.

Proof. A terminal object in H(A)(I) is given by any constant function from I
to P(A) with nonempty value (e.g. A). An infimum (or product) of φ and ψ
is given by (φ ∧ ψ)(i) = φ(i) ∧ ψ(i) = {〈a, b〉 | a ∈ φ(i) and b ∈ ψ(i)}. Heyting
implication in H(A)(I) is given by (exercise!)

(φ→ ψ)(i) = φ(i)→ ψ(i) = {e ∈ A | ∀a ∈ φ(i). ea ∈ ψ(i)}

An initial object of H(A)(I) is given by the constant function with value ∅. A
join (or sum) of φ and ψ is given by

(φ ∨ ψ)(i) = φ(i) ∨ ψ(i) = {〈true, a〉 | a ∈ φ(i)} ∪ {〈false, b〉 | b ∈ ψ(i)}

From the pointwise construction of these logical operations it is obvious that
they are preserved by reindexing.

Notice that reindexing preserves the logical operations as chosen in the proof of
Lemma 5.1 “on the nose”, i.e. up to equality.

Lemma 5.2. For every f : J → I in Set the reindexing map f∗ has a left
adjoint ∃f and a right adjoint ∀f . These adjoints satisfy the Beck-Chevalley
condition, i.e. for every pullback

L
q- J

K

p
?

g
- I

f
?

35

we have g∗∃f ∼= ∃pq∗ and g∗∀f ∼= ∀pq∗.

Proof. Let eq(i, j) = {a ∈ A | i = j}.
For f : J → I in Set the left adjoint ∃f to f∗ is given by

∃f (φ)(i) =
⋃
j∈J

eq(f(j), i) ∧ φ(j)

and the right adjoint ∀f to f∗ is given by

∀f (φ)(i) =
⋂
j∈J

eq(f(j), i)→ φ(j)

We leave the proof that these are actually adjoints and that they satisfy the
Beck-Chevally condition as an exercise(!) for the inclined reader.

Lemma 5.3. Let Ω = P(A) and T = idΩ ∈ H(Ω). Then T ∈ H(A)(Ω) is
a generic predicate in the sense that for all φ ∈ H(A)(I) there exists a map
f : I → Ω with f∗T ∼= φ.

Proof. Take φ for f .

Notice that in general for φ ∈ H(A)(I) there will be many different f with
φ ∼= f∗T .

Corollary 5.1. For every set I there is a predicate InI ∈ H(A)(I×ΩI) such
that for every ρ ∈ H(A)(I×J) there exists a map r : J → ΩI such that ρ ∼=
(idI×r)∗InI .

Proof. Define InI as InI(i, p) = p(i) for i ∈ I and p ∈ ΩI . For ρ ∈ H(A)(I×J)
take r(j) = λi:I.ρ(i, j).

In [HJP] Hyland, Johnstone and Pitts have introduced the notion of tripos (for
“topos representing indexed poset”), namely (pseudo)functors H : Setop →
pHa (where pHa is the category of pre-Heyting-algebras and morphism preserv-
ing the structure up to isomorphism) satisfying the requirements of Lemma 5.2
and Lemma 5.3. TriposesH provide a notion of model for higher order intuition-
istic logic in the sense that H(I) is the pre-Heyting-algebra of predicates on I,
left and right adjoints to reindexing provide existential and universal quantifica-
tion, respectively, and the structure provided in Cor. 5.1 allows one to interpret
types of predicates (as ΩI), predication (via InI) and comprehension (via the r
assoiated with a ρ).
For every set I there is an equality predicate eqI = ∃δI (>I) ∈ H(I×I) which is
isomorphic (exercise!) to the predicate ∀P∈ΩI .InI(i, P)→InI(j, P).31

We leave it as an exercise to explicitate the interpretation of higher order logic
in (realizability) triposes (for details see [HJP]).

31Notice that ∃δI (>I) is available even if one does not postulate a generic predicate T .

36

In [HJP] it has been shown32 how to associate with every tripos H a topos
Set[H]. In case of H(A) we get the so-called realizability topos RT(A) =
Set[H(A)] as it was introduced originally in [HJP, Hyl]. This tripos-to-topos
construction essentially consists in “adding quotients of equivalence relations”
and is spelled out in the following definition.

Definition 5.2. (realizability topos)
Let H(A) be a realizability tripos. The associated (realizability) topos RT(A)
= Set[H(A)] is defined as follows. Its objects are pairs X = (|X|, EX) where
|X| is a set and EX ∈ H(|X|×|X|) such that

(symm) EX(x, y) ` EX(y, x)

(trans) EX(x, y) ∧ EX(y, z) ` EX(x, z)

We write EX(x) as an abbreviation for EX(x, x).33 Morphisms from X to Y
in Set[H(A)] are given by F ∈ H(|X|×|Y |) satisfying

(strict) F (x, y) ` EX(x) ∧ EY (y)

(cong) EX(x, x′) ∧ EY (y, y′) ∧ F (x, y) ` F (x′, y′)

(singval) F (x, y) ∧ F (x, y′) ` EY (y, y′)

(tot) EX(x) ` ∃y:|Y |.F (x, y)

which are identified up to logical equivalence. We write [F] for the morphism
determined by F . Obviously [F] and [F ′] are equal iff F (x, y) ` F ′(x, y) and
F ′(x, y) ` F (x, y). If [F] : X → Y and [G] : Y → Z then their composition
in Set[H(A)] is given by [H] where H(x, z) ≡ ∃y:|Y |.F (x, y) ∧ G(y, z). The
identity morphism on X is the equivalence class [EX]. ♦

One easily checks that composition and identity maps satisfy the required prop-
erties. Notice, moreover, that [F] = [F ′] already if F (x, y) ` F ′(x, y).
The construction of Definition 5.2 applies also to general triposes H : Cop →
pHa giving rise to C[H]. For example Sub : Asm(A)op → pHa gives rise to
Asm(A)[Sub] which is equivalent to RT(A). This amounts to the construction
of RT(A) from Asm(A) as in [CFS] (see also penultimate paragraph of section
4). Every topos E arises in this way because E is equivalent to E [SubE]. Also
sheaf toposes over a complete Heyting algebra A arise in this way as Sh(A) =
Set[H(A)] where H(A)(I) = AI , φ `I ψ iff φ(i) ≤A ψ(i) for all i ∈ I and
H(A)(f)(φ) = φ ◦ f .

We next establish step by step that RT(A) satisfies all the properties required
for a topos.

Lemma 5.4. The category RT(A) has finite limits.

32In [HJP] they considered triposes H : Cop → pHa over arbitrary base categories C with
finite limits and have shown how to construct a topos C[H] from a tripos H.

33We read EX(x, y) as the proposition “x and y are equal elements of X” and EX(x) as
the proposition “x exists as an element of X”.

37

Proof. A terminal object is given by 1 = ({∗}, E1) where E1(∗, ∗) = >. For an
object X in RT(A) the terminal projection tX : X → 1 is given by [TX] where
TX(x, ∗) ≡ EX(x).
Let [F] : X → Z and [G] : Y → Z. Then their pullback is given by [P] : W → X
and [Q] : W → Y where |W | = |X| × |Y |,

EW ((x, y), (x′, y′)) ≡ EX(x, x′) ∧ EY (y, y′) ∧ ∃z:|Z|. F (x, z) ∧G(y, z)

and P andQ are defined as P ((x, y), x′) ≡ EW ((x, y))∧EX(x, x′) andQ((x, y), y′) ≡
EW ((x, y)) ∧ EY (y, y′), respectively.
We leave the straightforward verification of the required universal properties to
the inclined reader.

Notice that a product X×Y of X and Y in RT(A) is given by |X×Y | = |X|×|Y |
and EX×Y ((x, y), (x′, y′)) ≡ EX(x, x′) ∧ EY (y, y′).

Lemma 5.5. The category RT(A) has exponentials.

Proof. For objects X and Y of RT(A) their exponential Y X can be constructed
as follows. We put |Y X | = H(A)(|X|×|Y |) and define the equality predicate
EY X as follows: for F,G ∈ H(A)(|X|×|Y |) let EY X (F,G) be the conjunction

(strict) ∧ (cong) ∧ (singval) ∧ (tot) ∧ ∀(x, y):|X|×|Y |.F (x, y)↔G(x, y)

where (strict), (cong), (singval) and (tot) are as in Def. 5.2 but with ` re-
placed by → and all free variables universally quantified. The evaluation map
is given by [Ev] : Y X×X → Y where Ev((F, x), y) ≡ EY X (F) ∧ F (x, y). Again
the straightforward verification of the desired universal property is left to the
inclined reader.

Before embarking on the construction of a subobject classifier in RT(A) we give
a characterisation of monos in RT(A). Obviously, a map [M] : Y → X is monic
iff M(y, x) ∧M(y′, x) ` EY (y, y′). For such a mono [M] we can now construct
a predicate P ∈ H(A)(|X|) putting P (x) ≡ ∃y:|Y |.M(y, x) which satisfies the
properties

(strict) P (x)→ EX(x)

(cong) P (x) ∧ EX(x, x′)→ P (x′)

Now for every P ∈ H(A)(|X|) satisfying (strict) and (cong) one easily checks
(exercise!) that [MP] : XP � X is monic where |XP | = |X|, EXP

(x, x′) ≡
EX(x, x′) ∧ P (x) and MP (x′, x) ≡ P (x′) ∧ EX(x′, x). One also checks easily
that for every mono [M] : Y � X the subobject [MP] is isomorphic to [M]
where P (x) ≡ ∃y:|Y |.M(y, x).

Lemma 5.6. The category RT(A) has a subobject classifier t : 1 → Ω, i.e. t
is monic and for every mono m : Y � X in RT(A) there exists a unique map

38

χm : X → Ω with

Y - 1

X

m
?

?

χm
- Ω

t
?

?

Proof. Let Ω be the object in RT(A) with |Ω| = P(A) and EΩ(p, q) ≡ p↔q
which, obviously, is symmetric and transitive. Let t : 1 → Ω be the map [T]
with T (∗, p) ≡ p.
Obviously, the map t is monic (as 1 is terminal). Let m = [M] : Y � X. Define
P as in the remark after Lemma 5.5, namely as P (x) ≡ ∃y:|Y |.M(y, x). Now
we define χm as [XM] where XM (x, p) ≡ P (x)↔p. One easily checks that χ∗mt
is isomorphic to m because χ∗mt is isomorphic to [MP] as in the remark after
Lemma 5.5.
Uniqueness of classifying maps can be seen as follows. Let χ1, χ2 : X → Ω and
X1, X2 with χi = [Xi] for i=1, 2. Define Pi ∈ H(A)(|X|) as Pi(x) ≡ Xi(x,>).
One easily sees that the Pi satisfy (strict) and (cong). Now if MP1

and MP2

are isomorphic as subobjects of X one can check that P1 ↔ P2 from which it
follows that X1 ↔ X2 and thus χ1 = χ2 as desired.

Obviously, the truth value object Ω of RT(A) has precisely two global elements,
namely t : 1→ Ω and f : 1→ Ω given by p 7→ >↔p and p 7→ ⊥↔p, respectively.
Thus RT(A) is 2-valued. However, the topos RT(A) is not wellpointed as
otherwise it were boolean (see e.g. [St2]) which is only the case iff A is trivial
(as we shall see soon in Cor. 5.2).

Now we will identify Asm(A) as equivalent to a full subcategory of RT(A),
namely the ¬¬-separated objects of RT(A).

Definition 5.3. (separated objects of a topos)
An object X of a topos E is called ¬¬-separated (or simply separated) iff
∀x, y:X.¬¬x=y → x=y holds in E. We write Sep¬¬(E) (or simply Sep(E))
for the ensuing full subcategory of E. ♦

It is a well-known fact from topos theory (see e.g. [Joh]) that Sep(E) is a full
reflective subcategory of E where the reflection map preserves finite products
(but not equalizers in general since otherwise Sep(E) were a topos itself!). More-
over, it is known that Sep(E) is a so-called quasi-topos, i.e. a finitely cocomplete
regular locally cartesian closed category with a classifier for regular monos.34

Obviously, an object X of RT(A) is separated iff EX(x, x′) is equivalent to
EX(x) ∧ EX(x′) ∧ ¬¬EX(x, x′). As ¬¬p = ⊥ if p = ⊥ and ¬¬p = > otherwise

34A category C is locally cartesian closed (lcc) iff C has finite limits and and for all f : Y → X
the pullback functor f∗ : C/X → C/Y has a right adjoint Πf : C/Y → C/X. As Πf is a
right adjoint it preserves regular subobjects and thus Πfm is a regular mono whenever m is
a regular mono. Thus, regular monos are closed under universal quantification and thus also
under implication.

39

it follows that X is separated iff

EX(x, x′)↔
(
EX(x) ∧ EX(x′) ∧ eqX(x, x′)

)
holds in H(A) where eqX = ¬¬EX , i.e. eqX(x, x′) = {a ∈ A | EX(x, x′) 6= ∅}.
From this observation it follows that a separated object X is isomorphic to the
canonically separated object X ′ which is defined as follows. Let ∼X be the
relation on |X| with x ∼X x′ iff EX(x, x′) 6= ∅. The underlying set of X ′ is
defined as |X ′| = |X|/∼X

and EX′([x], [x′]) =
⋃
{EX(x′′) | x′′ ∈ [x]∩ [x′]}. This

suggests the following general definition of canonically separated object.

Definition 5.4. An object X of RT(A) is canonically separated iff the follow-
ing conditions hold for all x, x′ ∈ |X|

(1) EX(x, x) 6= ∅

(2) EX(x, x′) 6= ∅ implies x = x′. ♦

Thus Sep(RT(A)) is equivalent to the full subcategory of canonically separated
objects of RT(A) which in turn is obviously equivalent to Asm(A).
At this place a short sketch of the history seems to be appropriate. In [HJP] re-
alizability triposes and the ensuing realizability toposes were introduced the first
time (following suggestions of D. Scott). Immediately afterwards J.M.E.Hyland
provided a detailed investigation of the effective topos Eff = RT(K1) in [Hyl].
In [Hyl] Hyland observed that Eff contains Set as the full reflective subcat-
egory of ¬¬-sheaves (see e.g. [Joh] for information about sheaves), i.e. that
the global sections functor Γ : Eff → Set has a full and faithful right adjoint
∇ : Set→ Eff sending a set S to ∇(S) = (S, eqS) where eqS(x, y) = > if x = y
and eqS(x, y) = ⊥ otherwise. From this point of view it appeared as natural to
consider the ¬¬-separated objects which – in general topos theoretic terms – are
defined as those objectsX for which the reflection map ηX : X → ∇ΓX is monic.
From this it follows rather immediately that the ¬¬-separated objects are those
which arise as subobjects of objects of the form ∇(S). It was observed already
in [Hyl] that every separated object is equivalent to a canonically separated one
in the sense of Def. 5.4. Later on (starting around 1985 with an observation
by E. Moggi, see section 6) the category Asm(A) ' Sep(RT(A)) was used for
the purpose of constructing models of the polymorphic λ-calculus and other
impredicative type theories like the Calculus of Constructions of Th. Coquand
and G. Huet (for details see [St, Jac] and the references in there). As Asm(A)
is wellpointed it is much easier to work in it than in RT(A). The only thing
missing in Asm(A) are well-behaved quotients which we discuss next.
As RT(A) is a topos (see [Joh]) it has finite colimits and exact quotients in the
sense that for every equivalence relation r = 〈r1, r2〉 : R� X×X the coeqalizer
q : X � Q of r1 and r2 has the pleasant property that (r1, r2) is the kernel
pair of q. To illustrate this consider the equivalence relation R � Prop×Prop
induced by the predicate (p, q) 7→ p↔q on Prop×Prop. Then one can check easily
(exercise!) that the ensuing quotient is given by the map cΩ : Prop→ Ω induced
by the predicate CΩ ∈ H(A)(P(A)×P(A)) with CΩ(p, q) ≡ p↔q. However,

40

taking the quotient of R in Asm(A) gives rise to the map q̃Ω : Prop → ∇(2)
with q̃Ω(p) = 0 for p 6= ∅ and q̃Ω(∅) = 1. Thus, the reflection of Ω in RT(A) to
Asm(A) is ∇(2). This observation is used for proving the following

Lemma 5.7. A (weak) pca A is trivial whenever RT(A) is boolean.

Proof. Suppose RT(A) is boolean, i.e. Ω ∼= 1+1. Then 1+1 ∼= ∇(2) because
∇(2) is the reflection of Ω to Asm(A) and 1+1 is already in Asm(A). But
if ∇(2) ∼= 1+1 then true = false. Thus, for arbitrary a, b ∈ A we have a =
true a b = false a b = b, i.e. A is trivial.

As a consequence we get that

Corollary 5.2. A (weak) pca A is trivial whenever ΩRT(A) is separated.

Proof. Suppose Ω = ΩRT(A) is ¬¬-separated, i.e. in RT(A) it holds that
∀u, v∈Ω.¬¬(u=v)→u=v. Then ∀p∈Ω.¬¬(p=>)→p=>. As (p=>) ↔ p it fol-
lows that ∀p:Ω.¬¬p→p. Thus, the topos RT(A) is boolean from which it follows
by Lemma 5.7 that A is trivial.

We will show now that every object X of RT(A) can be covered by an epi
cX : CX � X with CX canonically separated. Let CX be the assembly with
|CX | = {x ∈ |X| | EX(x) 6= ⊥} and ||x||CX

= EX(x). The map cX is given by
the predicate RX ∈ H(|CX |×|X|) with RX(x′, x) ≡ EX(x′, x) which gives rise
to an epi as EX(x)→ ∃x′:|CX |.EX(x′, x) holds in H(A).
This fact explains why one can construct RT(A) from Asm(A) by “adding
quotients” as in [CFS].
We leave it as an exercise(!) for the inclined reader to verify the following
characterisation of epis and isos in RT(A).

Lemma 5.8. Let [F] : X → Y be a morphism in RT(A). Then [F] is an epi
iff EY (y)→ ∃x:|X|.F (x, y) holds in H(A).
Accordingly [F] is an isomorphism iff both EY (y)→ ∃x:|X|.F (x, y) and F (x, y)∧
F (x′, y) → EX(x, x′) hold in H(A) (besides the conditions (strict), (cong),
(singval) and (tot)).

Notice that arithmetic is available in Asm(A) and thus in RT(A) via the as-
sembly N with |N | = N and ||n||N = {n} (see Def. 3.2). The category Asm(A)
models higher order intuitionistic arithmetic when interpreting P (X) as PropX .
The category RT(A) models higher order arithmetic with extensionality prin-
ciple for predicates when interpreting P (X) as ΩX .
Thus, realizability toposes provide a framework sufficiently rich for interpreting
higher order (i.e. impredicative) intuitionistic mathematics. Actually, one can
show that realizability toposes do even host models for Intuitionistic Zermelo
Fraenkel set theory IZF (see [JM] and the references in there).

41

6 Modest Models of Polymorphism

One of the main benefits of modest sets is that they allow one to interpret
so-called “polymorphic” type theories (see [St, Jac]) as e.g. the polymorphic
λ-calculus (originally called “system F by its inventor Jean-Yves Girard) in a
nontrivial way. This is remarkable because all its models in Set are bound to
be trivial in the sense that all terms (of the same type) get identified in such a
model.
Before describing realizability models of polymorphic type theories we show
that Mod(A) constitutes a “small complete category internal to Asm(A)”. To
make this precise we first define what is a family of modest sets indexed by an
assembly.

Definition 6.1. A family of modest sets in Asm(A) (indexed by an assembly
X) is a morphism a : A→ X in Asm(A) such that for all x : 1→ X the object
Ax in

Ax - A

1

x∗a
?

x
- X

a
?

is modest. For X ∈ Asm(A) we write Mod(A)(X) for the full subcategory of
the slice category Asm(A)/X whose objects are families of modest sets indexed
by X. ♦

Obviously, families of modest sets are stable under pullbacks along arbitrary
morphisms in Asm(A).
The following characterisation will be used tacitly in the following.

Lemma 6.1. A morphism a : A→ X in Asm(A) is a family of modest sets iff
y1 = y2 whenever a(y1) = a(y2) and ||y1||Y ∩ ||y2||Y 6= ∅.

Proof. Straightforward exercise!

Lemma 6.2. For every X ∈ Asm(A) the category Mod(A)(X) has finite
limits and colimits.

Proof. Straightforward exrecise!

Lemma 6.3. For every f : Y → X in Asm(A) the functor Πf preserves
families of modest sets, i.e. whenever a : A→ Y is a family of modest sets then
Πfa is a family of modest sets as well.

Proof. Recall the construction of Πf from Theorem 4.4. Suppose e 〈x, s1〉, 〈x, s2〉.
Then p1e s1, s2. We show that then s1 = s2 and thus 〈x, s1〉 = 〈x, s2〉 as de-
sired.
Suppose y ∈ f−1(x). Let a Y y. Then from p1e s1, s2 it follows that
p1ea s1(y), s2(y) because a(s1(y)) = a(s2(y)) and a is a family of modest
sets.

42

Lemma 6.2 and 6.3 together say that “modest sets fibred over assemblies are
internally complete”.35

Notice, however, that Σfa need not be a family of modest sets even if a is. For
example if f : Y → X is not a family of modest sets then Σf idY = f is not a
family of modest sets although idY is.
However, there exists a left adjoint ∃f a f∗ : Mod(A)(X) → Mod(A)(Y)
given by RX ◦ Σf where RX is left adjoint to the inclusion Mod(A)(X) ↪→
Asm(A)/X. The construction of RX and the verification of the Beck-Chevalley
condition we leave as a (slightly nontrivial) exercise to the inclined reader.

For proving that the category of modest sets is essentially small the following
observation is crucial. Every modest set X ∈ Mod(A) is equivalent to the
modest set Xc where |Xc| = {||x||X | x ∈ |X|} and ||A||Xc

= A, i.e. Xc is
obtained from X by replacing every element x ∈ |X| by its set ||x||X of re-
alizers. Let us call modest sets of the form Xc canonically modest. There is
an obvious 1-1-correspondence between canonically modest sets and so-called
partial equivalence relations on A, i.e. symmetric and transitive binary rela-
tions on A (that in general are not reflexive!). If X is canonically modest then
the corresponding partial equivalence relation (“per”) RX is given by aRXb iff
∃x∈|X|.a, b X x, i.e. iff a and b realize the same element in |X|. On the other
hand for every per R on A the corrsponding canonically modest set AR is given
by |AR| = A/R = {[a]R | aRa} where [a]R = {a′ ∈ A | aRa′} and ||A||AR

= A,
i.e. an equivalence class is realized by its elements.

Lemma 6.4. There exists a generic family of modest sets, i.e. a family γ of
modest sets such that for all families a of modest sets there is a map f with
a ∼= f∗γ.

Proof. Let PER(A) be the set of all partial equivalence relations on A. Let
G be the assembly with |G| = {〈R,A〉 | R ∈ PER(A) and A ∈ A/R} and
||〈R,A〉||G = A. Then a generic family of modest sets is given by

γ : G→ ∇(PER(A)) : 〈R,A〉 7→ R

(realized e.g. by i) : if a : A → X is a family of modest sets then a ∼= f∗γ for
the map f : X → ∇(PER(A)) with f(x) = {〈a1, a2〉 | ∃y ∈ a−1(x). a1, a2 ∈
||y||A}.

This lemma together with Lemma 6.2 and 6.3 says that “modest sets form a
small full internal subcategory of Asm(A) which is internally complete”.36

We will now describe in a slightly more concrete way how Mod(A) gives rise
to models of polymorphic type theories.

Lemma 6.5. Let f : Y → X and A : Y → ∇(PER(A)). Then we have
∀f (A)∗γ ∼= ΠfA

∗γ where ∀f (A) : X → ∇(PER(A)) is defined as follows

e ∀f (A)(x) e′ iff ea A(y) e′a′ for all y ∈ f−1(x) and a, a′ ∈ ||y||Y .

35See vol. 2 of [Bor], [Jac] or [St3] for a precise account of internal completeness.
36Again see [Jac, St3] for an explanation of these notions.

43

Proof. Straightforward exercise!

As a consequence we get that universal quantification over assemblies of the
form ∇(I) is given by intersection of per’s.

Lemma 6.6. Let f : Y → X, A : Y → ∇(PER(A))) and x ∈ |X| such that
a Y y forall y ∈ f−1(x) and a ∈ |A|. Then (the modest set induced by the per)
∀f (A)(x) is isomorphic to (the modest set induced by the per)

⋂
y∈f−1(x)A(y).

Proof. By Lemma 6.5 we have e ∀f (A)(x) e′ iff ea A(y) e′a′ for all y ∈ f−1(x)
and a, a′ ∈ |A|, i.e. iff ea

⋂
y∈f−1(x)A(y) e′a′ for all a, a′ ∈ |A|. Let A1 and

A2 be the canonically modest sets induced by ∀f (A)(x) and
⋂
y∈f−1(x)A(y),

respectively, and ι : A1 → A2 be the map realized by Λx.xi. Then ι is an
isomorphism with ι−1 realized by Λx.Λy.x.

Thus, the isomorphism of Lemma 6.6 can be chosen uniformly in x ∈ |X|
because its realizer does not depend on x.

For a detailed description of the interpretation of polymorphic type theories
based on Lemma 6.5 and 6.6 see [St, Jac]. We just sketch here how it works
for polymorphic λ-calculus (Girard’s system F) as it was originally suggested
by E. Moggi in 1985 (when he was still a PhD student!).
The big type (also called “kind”) Tp of small system F types is interpreted by
the assembly ∇(PER(A)). Type judgements X1, . . . , Xn ` A will be interpreted

as morphisms [[A]] : Tpn → Tp where [[Θ ` ∀X.A]](~R) =
⋂
R∈PER(A)[[Θ, X `

A]](~R,R). Typing judgements X1, . . . , Xn | x1, . . . , xm ` t : B will be inter-
preted as equivalence classes of the per⋂

~R∈PER(A)n

[
[[A1]](~R)× · · · × [[An]](~R)→ [[B]](~R)

]
where the operations × and → on PER(A) mimick the corresponding ones on
Mod(A).
For the part of the polymorphic λ-calculus coming from simply typed λ-calculus
the interpretation is like the usual interpretation of simply typed λ-calculus in
ccc’s (here the Mod(A)(Tpn)). For Θ, X | Γ ` t : A with x 6∈ FV(Γ) we put

[[Θ | Γ ` ΛX.t : ∀X.A]](~R)(~a) =
⋂

R∈PER(A)

[[Θ, X | Γ ` t : A]](~R,R)(~a)

and for Θ | Γ ` t : ∀X.A and Θ ` B we put

[[Θ | Γ ` t{B}]](~R)(~a) = [e][[Θ,X`A]](~R,[[Θ`B]](~R))

with e ∈ [[Θ ` t : ∀X.A]](~R)(~a).

44

A Elementary Recursion Theory

For the convenience of the reader we recall here the basic definitions and facts
from elementary recursion theory as far as they are needed for our development
of realizability. For more detailed information it might be helpful to consult
Chapter 3 of [TvD] or the comprehensive book of Rogers [Ro].

Definition A.1. (partial recursive functions) The partial recursive functions
are the subset P of

⋃
k∈N
[
Nk⇀N

]
(where

[
A⇀B

]
stands for the set of partial

functions from A to B) defined inductively by the following clauses

(1) zero : N0→N : 〈〉 7→ 0 is in P.

(2) The successor function succ : N→ N : n 7→ n+ 1 is in P.

(3) For every n > 0 and i with 1 ≤ i ≤ n the projection function

πni : Nn → N : (x1, . . . , xn) 7→ xi

is in P.

(4) If g : Nn ⇀ N and hi : Nm ⇀ N for i = 1, . . . , n then the function

f : Nm ⇀ N : ~x 7→ g(h1(~x), . . . , hn(~x))

is in P whenever g and the hi are all in P.

(5) If g : Nn ⇀ N and h : Nn+2 ⇀ N are in P then the function f : Nn+1 ⇀ N
with

f(~x, 0) ' g(~x) and f(~x, n+ 1) ' h(~x, n, f(~x, n))

is in P.

(6) If f : Nk+1 ⇀ N is in P then the function µ(f) : Nk ⇀ N defined as

µ(f)(~x) '
{
n if f(~x, n) = 0 and ∀m < n. f(~x,m) > 0
↑ otherwise

is in P.

We write R for the set of total recursive functions, i.e. functions in P which
are total in the sense that they are defined for all arguments.
The functions inductively generated by clauses (1)-(5) are called primitive re-
cursive and we write PR for the set of all primitive recursive functions. ♦

The most important fact about the unary partial recursive functions is that
they can be gödelized in the following most pleasant way.

Theorem A.1. There is a surjective map φ from N to the unary partial recur-
sive functions satisfying the following conditions.

45

(1) The function
u : N2 ⇀ N : (e, n) 7→ φe(n)

is partial recursive.

(2) For every k ∈ N and k+1–ary partial recursive function f there is a k–ary
primitive recursive function h such that

φh(~n)(m) ' f(~n,m)

for all ~n ∈ Nk and m ∈ N.

Moreover, there is a ternary primitive recursive function T and a unary primi-
tive recursive function U such that

φn(m) ' U(µk. T (n,m, k))

where T is called Kleene’s T -predicate and U is called the result extraction func-
tion. Moreover, the predicate T can be chosen in such a way that T (n,m, k) ∧
T (n,m, k′)→ k = k′.

Proof. For details see e.g. [TvD]. We just mention the idea behind T and U .
The intuitive reading of T (n,m, k) is that k is a code for a (successful) compu-
tation of the algorithm with number n applied to argument m and U(k) is the
result of this computation. For given n and m there exists at most one (code of
a) successful computation from which “single-valuedness” of T is obvious.

For reasons of tradition we write {n} instead of φn. Whether {n} means the
n-th partial recursive function or the singleton set containing n will always be
clear from the context as e.g. in {n}(m) where {n} means the partial function
as it is applied to an argument.
The partial operation {·}(·) is called Kleene application and will be used freely
for building terms. Let e be an expression describing a partial recursive function
in the free variables of e. Then by Theorem A.1(2) there exists a primitive
recursive term Λx.e with {Λx.e}(n) ' e[n/x] for all n ∈ N. Terms which
possibly contain Kleene application will be called partial terms.
For partial terms t and s we write t = s as an abbreviation for ∃x.t = x∧ s = x
expressing that both t and s are defined and equal. We usually write t↓ for t = t
saying that t is defined, i.e. t terminates. This fixes what P (t) means when t is
a partial term and P (x) is an atomic formula. The homomorphic extension to
compound predicates A(x) is also denoted by A(t). But notice that A(t) does
not in general imply t↓ e.g. for A(x) ≡ ¬x = x we have A(t) → t↓ iff ¬¬t↓.
Finally notice that t↓ ∧A(t) is equivalent to ∃x.t = x ∧A(x).

Definition A.2. Let A ⊆ N. A is called recursively enumerable37 (r.e.) iff
there is a unary partial recursive function f such that n ∈ A iff f(n)↓ and A is
called decidable iff there is a unary total recursive function f such that n ∈ A
iff f(n) = 0. ♦

37This terminology may be surprising at first sight but it isn’t as one can show that a set
A of natural numbers is r.e. iff A is empty or there exists a total recursive function f with
A = {f(n) | n ∈ N}.

46

Obviously, every decidable set is also recursively enumerable but the reverse
inclusion does not hold.

Theorem A.2. The set K := {n ∈ N | {n}(n)↓} is recursively enumerable but
not decidable.

Proof. If K were decidable then N \ K = {n ∈ N | {n}(n)↑} were recursively
enumerable, i.e. there were an e ∈ N with

{e}(n)↓ ⇔ {n}(n)↑

but then (putting n = e) it would hold that

{e}(e)↓ ⇔ {e}(e)↑

which clearly is impossible.

Consequently, the halting set H := {〈n,m〉 | {n}(m)↓} is not decidable as
otherwise K were decidable in contradiction to Theorem A.2.
Notice that n 6∈ K can be expressed by the arithmetic formula ∀k.¬T (n, n, k).
Thus, no formal system can prove all true formulas of the form ∀k.¬T (n, n, k)
since otherwise K were decidable.

Theorem A.3. Let Ai = {n ∈ N | {n}(n)=i} for i = 0, 1. Then there is no
total recursive function f with f(n) = i whenever n ∈ Ai for i = 0, 1.

Proof. If there were such a recursive f then there would exist a total recursive
g with g[N] ⊆ {0, 1} satisfying

n ∈ A0 ⇒ g(n) = 1 and n ∈ A1 ⇒ g(n) = 0

for all n ∈ N. Let g = {e}. Then {e}(e) ∈ {0, 1} and, therefore, e ∈ A0 ∪ A1.
But this is impossible as if e ∈ A0 then 0 = {e}(e) = g(e) = 1 and if e ∈ A1

then 1 = {e}(e) = g(e) = 0.

One also says that A0 and A1 are recursively inseparable as there does not exist
a recursive set P such that A0 ⊆ P and A1 ⊆ N \ P .

Finally we fix some notation concerning the primitive recursive coding of finite
sequences of natural numbers by natural numbers. Such an encoding can be
obtained via the coding of pairs 〈·, ·〉 and its projections fst and snd in the
following way: 0 codes the empty sequence, 〈0, n〉 + 1 codes the sequence of
length 1 with n as its single element and 〈k+1, n〉+1 is the code of the sequence

fst(n), fst(snd(n)), . . . , fst(sndk−1(n)), sndk(n)

We write 〈n0, . . . , nk−1〉 for the unique code of the sequence n0, . . . , nk−1. More-
over, there exists a primitive recursive concatenation function ∗ satisfying

〈s〉∗〈t〉 = 〈s, t〉

47

for all s, t ∈ N∗. The function lgth defined as

lgth(〈n0, . . . , nk−1〉) = k

is primitive recursive. For n = 〈m0, . . . ,mk−1〉 and i ∈ N we define

ni =

{
mi if i < k
0 otherwise

which mapping is primitive recursive.
We write 〈s〉 � 〈t〉 iff s is a prefix of t and 〈s〉 ≺ 〈t〉 iff s is a proper prefix of t.
Obviously, � and ≺ are primitive recursive predicates on codes of sequences.
Furthermore, for a function α from N to N we write α(n) for (the code of)
the finite sequence 〈α(0), . . . , α(n−1)〉. This operation is primitive recursive in
α. We write s � α for s = α(lgth(s)), i.e. if α has prefix s. We also write
〈s0, . . . , sn−1〉 ∗ α for the function β from N to N with

β(k) =

{
sk if k < n
α(k−n) otherwise.

48

B Formal Systems for Intuitionistic Logic

The syntax of predicate logic employed here deviates from the usual practice in
one particular aspect: instead of having negation as a basic propositional con-
nective we introduce a propositional constant ⊥ (“falsity”) for the false propo-
sition and introduce negation via the “macro” ¬A ≡ A→ ⊥.
We suggest it as an informative exercise to justify the validity of the proof rules
of the following definition in terms of the BHK interpretation.

Definition B.1. (Natural Deduction)
Sequents are expressions of the form A1, . . . , An ` B where the Ai and B
are formulas of predicate logic. The intended meaning is that the assumptions
A1, . . . , An entail conclusion B. The valid sequences of Intuitionistic Predicate
Logic are defined inductively via the following proof rules

Propositional Connectives

Γ ` A Γ ` B
(∧I)

Γ ` A ∧B

Γ ` A1 ∧A2
(∧Ei)

Γ ` Ai

Γ, A ` B
(→ I)

Γ ` A→ B

Γ ` A→ B Γ ` A
(→ E)

Γ ` B

Γ ` Ai
(∨Ii)

Γ ` A1 ∨A2

Γ ` A ∨B Γ, A ` C Γ, B ` C
(∨E)

Γ ` C

Γ ` ⊥
(⊥E)

Γ ` C

Quantifiers

Γ ` A(x) x 6∈ FV (Γ)
(∀I)

Γ ` ∀x.A(x)

Γ ` ∀x.A(x)
(∀E)

Γ ` A(t)

Γ ` A(t)
(∃I)

Γ ` ∃x.A(x)

Γ ` ∃x.A(x) Γ, A(x) ` C x 6∈ FV (Γ, C)
(∃E)

Γ ` C

49

Structural Rules

(ax)
A ` A

Γ, A,B,∆ ` C
(ex)

Γ, B,A,∆ ` C

Γ ` C
(w)

Γ, A ` C

Γ, A,A ` C
(c)

Γ, A ` C

where we write FV (A1, . . . , An) for the finite set of variables having an unbound
occurrence in any of the formulas Ai. ♦

Notice that there are two elimination rules (∧E1) and (∧E2) for conjunction
and two introduction rules (∨I1) and (∨I2) for ∨.
It is absolutely necessary to take the variable conditions seriously in rules (∀I)
and (∃E) as otherwise one could derive obviously wrong sequents (like e.g.
∃x.A(x) ` ∀x.A(x)).

Although Natural Deduction is very close to the actual practice of mathematical
proofs it is sometimes useful to have available an inductive characterisation of
the set of all formulas A for which ` A is derivable in Natural Deduction. Such
an inductive characterisation of valid formulas is usually called a Hilbert Style
axiomatization of logic.

Theorem B.1. The set of all formulas A of predicate logic for which the sequent
` A is derivable in the calculus of Natural Deduction is defined inductively by
the following rules

(L1) A→ A

(L2) A , A→ B ⇒ B

(L3) A→ B , B → C ⇒ A→ C

(L4) A ∧B → A , A ∧B → B

(L5) C → A , C → B ⇒ C → A ∧B
(L6) A→ A ∨B , B → A ∨B
(L7) A→ C , B → C ⇒ A ∨B → C

(L8) A ∧B → C ⇒ A→ B → C

(L9) A→ B → C ⇒ A ∧B → C

(L10) ⊥ → A

(L11) B → A(x) ⇒ B → ∀x.A(x) (x 6∈ FV (B))

(L12) ∀x.A→ A(t)

(L13) A(t)→ ∃x.A
(L14) A(x)→ B ⇒ ∃x.A(x)→ B (x 6∈ FV (B)).

50

Proof. One easily shows that if A can be derived via the rules (L1)–(L14) then
` A can be proved by Natural Deduction.
For the reverse direction one shows that if A1, . . . , An ` B can be derived in the
calculus of natural deduction then the formula A1 → . . .→ An → B is derivable
via the rules (L1)-(L14).

51

C Alternative Proof that Asm(A) is Regular

As shown in [Bor](vol.2) in a regular category E a morphism e is a regular epi
iff e is a cover, i.e. every mono through which e factors is an isomorphism. This
suggests that a category E is regular iff it validates the following conditions

(1) E has finite limits

(2) every morphism of E factors as a cover followed by a mono

(3) covers are stable under pullbacks along arbitrary morphisms in E

and actually as shown in A.1.3.4 of [Joh] a category validating these conditions
is regular since all covers are equalizers of their kernel pairs. (It is an easy
exercise to show that in regular categories regular epis are covers.)
Let f : X → Y be a morphism in Asm)(A). Then it factors as f = mf ◦ ef
where ef : X → If is the coequalizer of the kernel pair of f . Recall that
|If | = f

[
|X|
]

and a If y iff a X x for some x ∈ |X| with e(x) = y. Moreover,
we have ef (x) = f(x) and i ef . The map mf sends y ∈ |If | to y and it is
realized by any realizer of f .

Lemma C.1. In Asm(A) for a morphism f : X → Y the following conditions
are equivalent

(1) f is a cover

(2) f is the coequalizer of its kernel pair

(3) the map f : |X| → |Y | is onto and there is an e ∈ A such that for every
y ∈ |Y | and a Y y there is an x ∈ f−1(y) with ea X x.

Proof. Suppose f is a cover. Then mf is an isomorphism and thus f is a
coequalizer of its kernel pair.
Suppose f is the coequalizer of its kernel pair. Then mf is an isomorphism.
Then there exists e ∈ A such that for any y ∈ |Y | and a Y y we have ea
m−1
f (y), i.e. ea `X x for some x ∈ f−1(y).

Suppose f validates condition (3). Suppose f = m ◦ g with m : Z → Y
monic. Since f : |X| → |Y | is onto the map m : |Z| → |Y | is a bijection. Let
e ∈ A such that for every y ∈ |Y | and a Y y there is an x ∈ f−1(y) with
ea X x. Moreover, let ẽ be a realizer for g. Then the inverse of m is realized
by Λa.ẽ(ea).

Theorem C.1. The category Asm(A) is regular.

Proof. It is already known that Asm(A) has finite limits.
Every morphism f in Asm(A) factors as f = mfef where mf is monic and
ef is the coequalizer of the kernel pair of f . Obviously, the map ef validates
condition (3) of Lemma C.1 and thus is a cover.
One easily checks that morphisms validating condition (3) of Lemma C.1 are
stable under pullbacks along arbitrary morphisms in Asm(A). For this reason
covers are stable under pullbacks along arbitrary morphisms in Asm(E).

52

One easily checks that for f : X → Y in Asm(A) the object If is modest
wheneverX is modest. Thus Lemma C.1 holds also for Mod(A) which allows
us to prove that

Theorem C.2. The category Mod(A) is regular.

in a way amost identical with the proof of Th. C.1.

53

References

[Bar] J. Barwise (ed.) Handbook of Mathematical Logic North Holland, 1977.

[Bau] A. Bauer The Realizability Approach to Computable Analysis and
Topology PhD Thesis, Carnegie-Mellon Univ. 2000.

[BiBr] E. Bishop, D. Bridges Constructive Analysis Grundlehren der mathe-
matischen Wissenschaften 279, Springer, 1985.

[Bor] F. Borceux Handbook of Categorical Algebra 3 vols., Cambridge
Univ. Press (1994).

[Bu] S. Buss (ed.) Handbook of Proof Theory Elsevier 1998.

[CFS] A. Carboni, P. J. Freyd, A. Scedrov A categorical approach to realiz-
ability and polymorphic types in Springer Lecture Notes in Comput.
Sci., 298, pp.23–42 (1987).

[Hyl] M. Hyland The effective topos in Proc. of The L.E.J. Brouwer Cente-
nary Symposium pp.165–216, North-Holland, 1982.

[HJP] M. Hyland, P. Johnstone, A. Pitts Tripos Theory Math. Proc. Cam-
bridge Philos. Soc. 88, no. 2, pp.205–231, 1980.

[HS] J. R. Hindley, J. P. Seldin Introduction to combinatory logic and λ-
calculus Cambridge University Press, UK 1986.

[Jac] B. Jacobs Categorical Logic and Type Theory North Holland (1999).

[Joh] P. T. Johnstone Sketches of an Elephant. A Topos Theory Compendium.
2 vols. OUP (2002).

[JM] A. Joyal, I. Moerdijk Algebraic Set Theory CUP (1995).

[KV] S. C. Kleene, R. Vesley The Foundations of Intuitionistic Mathematics
North Holland, 1965.

[Lon] J. Longley Realizability Toposes and Language Semantics. PhD Thesis,
Univ. Edinburgh 1994.

[Ro] H. Rogers jr. Theory of recursive functions and effective computability.
2nd edition, MIT Press, Cambridge, MA, 1987.

[Roh] A. Rohr A Universal Realizability Model for Sequential Computation.
PhD Thesis, TU Darmstadt (2002) electronically available from
www.mathematik.tu-darmstadt.de/~streicher/THESES/rohr.ps.gz

[Sc80] Dana S. Scott Relating theories of the λ-calculus in To H. B. Curry:
essays on combinatory logic, lambda calculus and formalism pp. 403-450
Academic Press, London-New York (1980).

54

[St] T. Streicher Semantics of Type Theory Birkhäuser, 1991.

[St1] T. Streicher Introduction to Constructive Logic and Mathematics. Lec-
ture notes, 2001. electronically available at
www.mathematik.tu-darmstadt.de/~streicher/CLM/clm.pdf

[St2] T. Streicher Introduction to Category Theory and Categorical Logic.
Lecture notes, 2003. electronically available at
www.mathematik.tu-darmstadt.de/~streicher/CTCL.pdf

[St3] T. Streicher Fibred Categories à la Bénabou. Lecture notes, 2003-2017.
electronically available at
www.mathematik.tu-darmstadt.de/~streicher/FIBR/FibLec.pdf

[St4] T. Streicher Domain-theoretic Foundations of Functional Programming.
Imperial College Press, 2007.

[Tr73] A. Troelstra (ed.) Metamathematical Investigations of Intuitionistic
Arithmetic and Analysis SLNM 344, Springer Verlag, 1973.

[Tr77] A. Troelstra Aspects of Constructive Mathematics pp. 973-1052 of [Bar].

[TvD] A. Troelstra, D. vanDalen Constructivism in Mathematics 2 vol.’s,
North Holland, 1988.

[Tr98] A. Troelstra Realizability pp. 407-473 of [Bu].

[vOo] J. van Oosten Realizability. An Introduction to its Categorical Side.
Elsevier (2008).

55

