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Computational Meaning of HoTT? (1)

HoTT is Intensional Type Theory together with Voevodsky’s
Univalence Axiom (UA) and Higher Inductive Types (HITs).

Let us recall what UA says. This requires a few definitions

iscontr(X : Set) = (Σx : X )(Πy : X ) IdX (x , y)

hfiber(X ,Y : Set)(f : X → Y )(y : Y ) =
= (Σx : X ) IdY (f (x), y)

isweq(X ,Y : Set)(f : X → Y ) =
= (Πy : Y ) iscontr(hfiber(X ,Y , f , y))

Weq(X ,Y : Set) = (Σf : X → Y ) isweq(X ,Y , f )
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Computational Meaning of HoTT? (2)

Using the eliminator J for identity types one easily constructs a
map

eqweq(X ,Y : Set) : IdSet(X ,Y )→Weq(X ,Y )

Then the Univalence Axiom

UA : (ΠX ,Y : Set) isweq(eqweq(X ,Y ))

postulates that all maps eqweq(X ,Y ) are weak equivalences.

It has been shown that simplicial sets provide a model of HoTT
interpreting types as Kan complexes.
But UA as it is lacks computational meaning:
what should be rewrite rules for the constant UA?

T. Coquand et.al. [CCHM] have developed a Cubical Type Theory
with computational meaning and in which one can derive UA.
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From Simplicial Sets to Cubical Sets (1)

Bezem and Coquand have shown that the theory of simplicial sets
is not constructive, e.g. one cannot show constructively that Kan
complexes are closed under exponentiation!

This limitation, however, can be overcome when working in
cubical sets.

The crucial property is that representable objects are closed under
finite products. In sSet the interval I is representable but I× I is
not!

The site of sSet is ∆, the full subcategory of Poset on finite
non-empty linear posets.
The site of cSet is 2, the full subcategory of Poset of finite
powers of 2.
Splitting idempotents in 2 gives rise to FL, the full subcategory of
Poset on finite lattices.
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From Simplicial Sets to Cubical Sets (2)

Notice that 2 is op-equivalent to the category of free finitely
generated distributive lattices. Coquand et.al. – just for
convenience – used the opposite of free finitely generated de
Morgan algebras.

Let i : ∆→ FL be the inclusion functor. The restriction functor i∗

from cSet = F̂L to sSet = ∆̂ has left and right adjoints i! and i∗,
respectively. Since the restriction of the nerve functor Nv to FL is
given by i∗ ◦ YFL we have

i∗(X )(L) ∼= cSet(Y(L), i∗(X )) ∼= sSet(i∗Y(L)),X ) ∼= sSet(Nv(L),X )

from which it follows that i∗ is full and faithful (and thus also i!).
Since i∗ has a left adjoint i! (given by left Kan extension of YFL ◦ i
along Y∆) it preserves (finite) limits and thus i∗ a i∗ is an
injective geometric morphism.
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The topology on FL inducing sSet

A sieve S ⊆ YFL(L) covers L iff i∗S = i∗YFL(L) = Nv(L) iff S
contains all chains in L, i.e. all monotone maps [n]→ L.

The corresponding closure operator j : Ω→ Ω sends S ⊆ YFL(L)
to all u : K → L such that uc ∈ S for all chains c : [n]→ K .
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Cisinski Model Structures on cSet and sSet (1)

For Cisinski model structures on Ĉ its class of cofibrations consist
of all monos.
Its class of trivial fibrations consists of maps weakly right
orthogonal to all monos.
A naive fibration is a map weakly right orthogonal to all
cylinders, i.e. monos of the form

({ε} × X ) ∪ (I× Y ) ↪→ I× X

where Y ⊆ X , ε ∈ {0, 1} ⊆ I = Y(2).
The trivial cofibrations are the maps weakly left orthogonal to all
naive fibrations.

On sSet this construction gives the classical model structure and
on cSet the one employed by Coquand et.al. in [CCHM].
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Cisinski Model Structures on cSet and sSet (2)

Since i∗ preserves I and finite limits and it retracts monos of cSet
onto monos of sSet it follows that i∗ retracts cylinders in sSet
onto cylinders in sSet.
Thus i∗p is a fibration in cSet iff p is a fibration in sSet.
Accordingly, we have FsSet = sSet ∩ FcSet.

Thus i∗ a i∗ is a Quillen pair.

We don’t know whether it is a Quillen equivalence.
But presumably not!
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i∗ preserves and reflects “equality” of fibrant objects

Theorem If A and B are fibrant in sSet, i.e. Kan complexes, a
map f : A→ B is a weak equivalence in sSet iff it is a weak
equivalence in cSet.

Proof.
One can show that i∗(hfiber(f )) ' hfiber(i∗f ) and thus
∀m ∈ Mono(cSet)(m ⊥ hfiber(i∗f )) iff
∀m ∈ Mono(cSet)(m ⊥ i∗(hfiber(f ))) iff
∀m ∈ Mono(cSet)(i∗m ⊥ hfiber(f )) iff1

∀m ∈ Mono(sSet)(m ⊥ hfiber(f ))
i.e.2 i∗f is a weak equivalence in cSet iff f is a weak equivalence
in sSet. 2

1since the monos in sSet are precisely the sheafifications of monos in cSet
2as shown by Voevodsky for fibrant objects A and B a map w : A → B is a

weak equivalence iff hfiber(w) is a trivial cofibrations, i.e. m ⊥ hfiber(w) for all
monos m
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Universes in cSet and sSet

In both cSet and sSet we may construct universes

πc : Ec → Uc and πs : Es → Us

à la Yoneda where U(I ) consists of all small fibrations over Y(I ).
In both cases one could show the universe to be fibrant and
univalent!
However, in case of sSet this requires heavy choice (due to use of
minimal fibrations!) but not so for cSet.

If i∗ preserved fibrations, i.e. i! preserved cylinders, then i∗πc were
a universe generic for small Kan fibrations.
Composing this with the map sending a small fibration over
Y2([n]) to its sheafification which is a small fibration over Y∆([n])
we would obtain a univalent universe equivalent to πs .
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But i! : sSet ↪→ cSet does not preserve finite limits!

Since both i! and i∗ are cocontinuous and i! is full and faithful the
full embedding i! preserves and reflects colimits. Thus sSet is a full
subcategory of cSet closed under colimits (taken in cSet).

By a well known theorem i! preserves finite limits iff FL(L, i(−)) is
flat for all L ∈ FL which, however, is not the case:
let L = [1]× [1] then there are (precisely two) 1-1 maps
f , g : [1]× [1]→ [3] not fitting into a diagram of the form

[3] �
p

[n]
q
- [3]

[1]× [1]

h
6

g

-
�

f
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Staying within cSet avoids the problem!

Cut Uc down to the subuniverse Ucs consisting at stage L ∈ FL of
all A ∈ U(L) such that a : El(A)→ Y(L) is a family of sheaves, i.e.

El(A)
ηEl(A)- i∗i

∗El(A)

Y(L)

a

?

ηY(L)

- i∗i
∗Y(L)

i∗i
∗a

?

or equivalently a is strictly right orthogonal to all subobjects of
representables which are dense, i.e. inverted by i∗.
This universe Ucs classifies small families of sheaves which are
fibrations in cSet. If the indexing object is a sheaf such families
coincide with images of fibrations under i∗.
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Conclusion and Outlook

We have shown that simplicial sets form a(n essential)
subtopos of cubical sets.

Moreover, sSet is a submodel of cSet since the inclusion
i∗ : sSet ↪→ cSet preserves Σ and Π and also the interval I
and thus also identity types.

Cutting down the universe Uc to families of sheaves weakly
classifies (small) fibrations of sheaves.
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