Sheaf Models for CZF refuting Power Set and Full Separation

A. Simpson (Univ. Edinburgh) Thomas Streicher (TU Darmstadt)

Oberwolfach April 2008

Previously (~2004), R. Lubarsky, B. van den Berg and I have (independently) constructed **realizability models** for CZF which refute the Power Set axiom but still validate the Full Separation schema.

(CZF + Sep has strength of 2nd Order Arith.)

The aim of this talk is to describe

sheaf models for CZF

which always **refute Full Separation** and in some natural cases also refute **Power Set**.

Our models arise as a variation of D. Scott's (pre)sheaf models for IZF but by iterating a *restricted powerset* functor \mathcal{P}_s instead of the *full powerset* functor \mathcal{P} of the (pre)sheaf topos.

Recap of IZF and CZF

Intuitionistic Zermelo Fraenkel set theory IZF is obtained from ZF by dropping Excluded Middle and replacing the Regularity axiom by \in -induction.

Constructive Zermelo Fraenkel set theory CZF is obtained from IZF by

- (1) restricting the Separation scheme to **bounded** formula
- (2) replacing the Powerset axiom by the following **Fullness** axiom $(\exists c \subseteq \mathsf{mv}(a,b))(\forall r \in \mathsf{mv}(a,b))(\exists s \in c) \ s \subseteq r$ where $\mathsf{mv}(a,b)$ is the class of total realtions from a to b
- (3) strengthening Replacement to **Strong Collection** $(\exists c)(\forall \vec{z})$ $((\forall x \in a)(\exists y \in b)\varphi) \Rightarrow (\exists d \in c)\mathbb{M}(x:a, y:d)\varphi$ where $\mathbb{M}(x:a, y:b)\varphi(x, y, ...)$ stands for $(\forall x \in a)(\exists y \in b)\varphi \land (\forall y \in b)(\exists x \in a)\varphi(x, y, ...).$

Presheaf Models for IZF

As suggested by D. Scott (~1980) for arbitrary small categories C in $\hat{C} = \text{Set}^{C^{\text{op}}}$ consider the **class**-valued presheaf V(C) which is the least fixpoint of \mathcal{P} .

Recall that for $X \in \widehat{\mathcal{C}}$ the power object $\mathcal{P}(X)$ is given by

 $\mathcal{P}(X)(I) = \operatorname{Sub}_{\widehat{\mathcal{C}}}(\mathsf{y}(I) \times X)$

where y(I) = C(-, I).

For $a \in \mathcal{P}(X)(I)$ and $u : J \to I$

$$a \cdot u = \mathcal{P}(X)(u)(a) = \{ \langle v, x \rangle \mid \langle uv, x \rangle \in a \}$$

is the **reindexing** of A along u.

Equality and membership in $V(\mathcal{C})$ are given by the following forcing clauses

$$\begin{split} I \Vdash a \in b & \text{iff} \quad \langle \text{id}_I, a \rangle \in b \\ I \Vdash a = b & \text{iff} \quad \text{for all } u : J \rightarrow I \text{ and } c \in V(\mathcal{C})(J) \\ & \langle u, c \rangle \in a \text{ implies } J \Vdash c \in b \cdot u \\ & \langle u, c \rangle \in b \text{ implies } J \Vdash c \in a \cdot u \end{split}$$

and forcing clauses for logic are as usual.

Sheaf Models for IZF

In 1980 M. Fourman has shown how to interpret IZF in **cocomplete** toposes \mathcal{E} by constructing V_{α} in \mathcal{E} for every ordinal α .

For the typical case of a Grothendieck topos $\mathcal{E} = Sh(\mathcal{C}, \mathcal{J})$ a forcing definition using $V(\mathcal{C})$ can be obtained by modifying the clause for elementhood as follows

$$I \Vdash a \in b \quad \text{iff} \quad \text{there exists a } \mathcal{J}\text{-cover } (I_i \xrightarrow{u_i} I)$$

and $c_i \in V(\mathcal{C})(I_i) \text{ s.t. for all } i$
 $I_i \Vdash a \cdot u_i = c_i \text{ and } \langle u_i, c_i \rangle \in b$

The clause for equality is as before and the clauses for \perp , \vee and \exists have to be modified as usual in Kripke-Joyal semantics.

Theorem The (colimit of the) cumulative hierachy in $Sh(C, \mathcal{J})$ is isomorphic to V(C)modulo the equivalence relation = on V(C)as given by forcing.

Proof (Idea)

Since $\langle u_i, c_i \rangle \in b$ is equivalent to $\langle id_{I_i}, c_i \rangle \in b \cdot u_i$ the definition of \in (implicitly) performs \mathcal{J} closure.

"Getting Smaller" (1)

Instead of iterating the powerset functor \mathcal{P} on $\widehat{\mathcal{C}}$ we consider a subfunctor \mathcal{P}_{cg} which is defined as follows.

A presheaf $X \in \widehat{C}$ is **countably generated** iff there exists a countable (including the empty one) family $(x_n \in X(I_n))$ s.t. every $x \in X(I)$ is of the form $x = x_n \cdot u$ for some $u : I \rightarrow$ I_n . We write $\operatorname{Sub}_{cg}(X)$ for the **collection of countably generated subpresheaves of** Xand define \mathcal{P}_{cg} as

$$\mathcal{P}_{cg}(X)(I) = \mathsf{Sub}_{cg}(\mathsf{y}(I) \times X)$$

Now we may define the **countably gener**ated hierachy $U(\mathcal{C})$ in $\widehat{\mathcal{C}}$ as

$$U(\mathcal{C})_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{P}_{cg}(V_{\beta})$$

which stabilises at ω_1 , i.e. $U(\mathcal{C})_{\omega_1}$ is the least fixpoint of \mathcal{P}_{cg} .

"Getting Smaller" (2)

We have in mind the **countable cover** topology on C when defining (by transfinite recursion) the forcing clauses for = and \in as

$$\begin{split} I \Vdash a \in b & \text{iff} \quad \text{there exists a countable family} \\ & (u_n, c_n) \text{ in } b \text{ such that } (u_n) \\ & \text{covers } I \text{ and for all } n \\ & \text{dom}(u_n) \Vdash c_n = a \cdot u_n \\ I \Vdash a = b & \text{iff} \quad \text{for all } u : J \rightarrow I \text{ and } c \in U(J) \\ & \text{it holds that} \\ & \langle u, c \rangle \in a \text{ implies } J \Vdash c \in b \cdot u \\ & \text{and} \\ & \langle u, c \rangle \in b \text{ implies } J \Vdash c \in a \cdot u. \end{split}$$

For suitably chosen C the structure U(C)with = and \in defined as above give rise to models of CZF refuting both the Power Set axiom and the Full Separation schema.

Next we explain what "suitably chosen" means:

Constructive Toposes

are categories ${\mathcal E}$ such that

(1) \mathcal{E} is a Heyting category, i.e. is regular and for all $f : A \to B$ in \mathcal{E} the map f^{-1} : $Sub_{\mathcal{E}}(B) \to Sub_{\mathcal{E}}(A)$ has a right adjoint \forall_f

(2) ${\cal E}$ has stable and disjoint finite sums

(3) every equivalence relation $r = \langle r_1, r_2 \rangle$: $R \rightarrow A \times A$ appears as kernel pair of the coequalizer $q : A \rightarrow A_{/R}$ of r_1 and r_2

(4) \mathcal{E} is locally cartesian closed (lccc), i.e. for every $f : A \to B$ the pullback functor f^* : $\mathcal{E}/B \to \mathcal{E}/A$ has a right adjoint Π_f .

Regular categories satisfying conditions (2) and (3) are called **pretoposes** provided coequalizers of equivalence relations are stable under pullbacks. This latter condition follows from (4) because f^* has a right adjoint and thus preserves colimits.

We need **constructive** ∞ -toposes, i.e. constructive toposes with stable and disjoint **countable sums**. They have a **natural numbers object** (nno) $N = \prod_{\omega} 1$.

A More Abstract View (1)

In order to prove **soundness of our model** we need a more **abstract view** of it.

Let \mathcal{E} be some fixed constructive ∞ -topos endowed with the **countable cover** topology: a sieve S on $I \in \mathcal{E}$ **covers** I iff there exists a countable family $(u_n : I_n \to I)$ in S s.t. for every $u : J \to I$ in S there exists a $v : J \to I_n$ with $u = u_n v$. This topology is *subcanonical*, i.e. all representable presheaves are sheaves. We write $Sh_{\infty}(\mathcal{E})$ for the category of sheaves over \mathcal{E} w.r.t. countable cover topology.

Following a suggestion of Jean Bénabou we identify **"small"** with **representable** and call a map $f : Y \to X$ **"small"**, i.e. a **family of small objects**, iff for all $x : y(I) \to X$

for some $u: J \to I$ in \mathcal{E} .

A More Abstract View (2)

For interpreting bounded formulas as sets, i.e. small objects, we require the equality predicates to be small maps. We call an object X**separated** iff δ_X is small and denote the ensuing full subcategory of $Sh_{\infty}(\mathcal{E})$ by $Idl_{\infty}(\mathcal{E})$. We write $S_{\mathcal{E}}$ for the collection of small maps in $Idl_{\infty}(\mathcal{E})$.

 $IdI_{\infty}(\mathcal{E})$ is thought of as the **category of classes** and $\mathcal{S}_{\mathcal{E}}$ as the collection of all **families of sets** indexed by classes. $IdI_{\infty}(\mathcal{E})$ is a Heyting category and $\mathcal{S}_{\mathcal{E}}$ satisfies the axioms (S1) $\mathcal{S}_{\mathcal{E}}$ is closed under composition and contains all isos

(S2) $\mathcal{S}_{\mathcal{E}}$ is stable under pullbacks along arbitrary morphisms of \mathcal{E}

(S3) all diagonals $\delta_A : A \rightarrow A \times A$ are in $S_{\mathcal{E}}$ (S4) if e is a cover, i.e. regular epi, and $f \circ e \in S_{\mathcal{E}}$ then $f \in S_{\mathcal{E}}$

(S5) if $f: C \to A$ and $g: D \to A$ are in $\mathcal{S}_{\mathcal{E}}$ then $[f,g]: C + D \to A$ is also in $\mathcal{S}_{\mathcal{E}}$

Remark Under (S1) and (S2) condition (S3) is equivalent to the requirement that $g \in S_{\mathcal{E}}$ whenever f and fg are in $S_{\mathcal{E}}$.

A More Abstract View (3)

The following characterisation of $IdI_{\infty}(\mathcal{E})$ within $Sh_{\infty}(\mathcal{E})$ is useful later when constructing a universe corresponding to $U(\mathcal{E})$.

Th 1 For objects A of $Sh(\mathcal{E})$ t.f.a.e.

(1) A is in $\mathrm{Idl}_\infty(\mathcal{E})$

(2) A arises as colimit in $\widehat{\mathcal{E}}$ of an ∞ -ideal diagram, i.e. an ω_1 -directed diagram of monos between representable objects

(3) for every $f : y(I) \to A$ its image in $Sh_{\infty}(\mathcal{E})$ is representable.

NB An analogous theorem was suggested by A. Joyal and proved by S. Awodey et.al. for Sh(\mathcal{E}), the category of sheaves w.r.t. the **finite** cover topology on \mathcal{E} , the full subcategory Idl(\mathcal{E}) of separated objects and ideal diagram, i.e. ω_0 -directed diagrams of monos between representable objects.

We can't take this because in the ensuing model of set theory the ordinal ω is not a set though sets host a nno!

A More Abstract View (4)

Next we consider a **small powerset** functor \mathcal{P}_s on $\mathrm{Idl}_{\infty}(\mathcal{E})$ whose initial fixpoint will be the universe corresponding to $U(\mathcal{E})$.

A relation $r : R \rightarrow A \times I$ is called **small** iff $\pi_2 \circ r : R \rightarrow I$ is in $\mathcal{S}_{\mathcal{E}}$, i.e. r is small iff it is a(n *I*-indexed) family of small subobjects of A. Obviously, for $u : J \rightarrow I$ in \mathcal{E} the relation $(A \times u)^* r$ is also small.

Th 2 For every A in $Idl_{\infty}(\mathcal{E})$ there is a small relation $\in_A \to A \times \mathcal{P}_s(A)$ such that for every small relation $r : R \to A \times I$ there exists a unique map $\varrho : I \to \mathcal{P}_s(A)$ in $Idl_{\infty}(\mathcal{E})$ s.t.

The object $\mathcal{P}_s(A)$ is called the *power class* of A. Its elements are subsets of A. But in general $\mathcal{P}_s(A)$ is not small even if A is small.

A More Abstract View (5)

Yoneda tells us that

 $\mathcal{P}_s(A)(I) \cong \mathrm{Idl}_\infty(\mathcal{E})(y(I), \mathcal{P}_s(A)) \cong$

 $\cong \{r : R \rightarrowtail A \times y(I) \mid r \text{ small relation} \}$

Since the powerset functor \mathcal{P} for $Sh_{\infty}(\mathcal{E})$ is given by $\mathcal{P}(A)(I) = Sub_{Sh_{\infty}(\mathcal{E})}(A \times y(I))$ it follows that

$$\mathcal{P}_s(A) \subseteq \mathcal{P}(A)$$

for $A \in Sh_{\infty}(\mathcal{E})$.

Remark Notice that $\mathcal{P}(A)$ is the class of *subclasses* of A (an "impredicative" notion of class is available in $Sh_{\infty}(\mathcal{E})$!) whereas $\mathcal{P}_s(A)$ is the subclass of $\mathcal{P}(A)$ consisting of (families of) *subsets* of A.

Th 3 $\mathcal{P}_s(1)$ is small iff \mathcal{E} is a topos.

Proof. We have $\mathcal{P}_s(1)(I) \cong \{\text{repr. subobj. of } y(I)\} \cong \text{Sub}_{\mathcal{E}}(I).$ Thus $\mathcal{P}_s(1)$ is small iff $\text{Sub}_{\mathcal{E}}$ is representable iff \mathcal{E} is a topos.

A More Abstract View (6)

Th 4 The functor $\mathcal{P}_s : \mathrm{Idl}_{\infty}(\mathcal{E}) \to \mathrm{Idl}_{\infty}(\mathcal{E})$ preserves ∞ -ideal colimits.

Proof (Sketch) If $y(J) \cong R \xrightarrow{r} A \times y(I)$ then by Th.1(3) the map $r_1 = \pi_1 \circ r : y(J) \to A$ factors through $m : y(K) \to A$ via some regular epimorphism $e : y(J) \to y(K)$ and we have

and $y(K) \times y(I) \cong y(K \times I)$.

Thus, if A is the ∞ -ideal colimit of $(y(A_i))_{i \in I}$ then

$$\mathcal{P}_s(\operatorname{colim}_{i \in I}) \cong \operatorname{colim}_{i \in I} \mathcal{P}_s(y(A_i))$$

A More Abstract View (7)

Since \mathcal{P}_s preserves ∞ -ideal colimits (Th 4) it has an initial fixpoint $U_{\mathcal{E}}$ which is attained after ω_1 iterations, i.e.

$$U_{\mathcal{E}} = \operatorname{colim}_{\alpha < \omega_1} \mathcal{P}_s^{\alpha}(0)$$

Interpreting \in as

 $\in_{U_{\mathcal{E}}} \to U_{\mathcal{E}} \times \mathcal{P}_s(U_{\mathcal{E}}) \cong U_{\mathcal{E}} \times U_{\mathcal{E}}$

and equality as $\delta_{U_{\mathcal{E}}}$ gives rise to a first order structure (in $\mathrm{Idl}_{\infty}(\mathcal{E})$ thus in $\widehat{\mathcal{E}}$) which can be shown to be isomorphic to the forcing model $U(\mathcal{E})$ modulo = as defined by forcing.

More precisely, $U_{\mathcal{E}}$ is isomorphic to $U(\mathcal{E})_{/\sim}$ – where $a \sim b$ means $I \Vdash a = b$ for $a, b \in U(\mathcal{E})$ – and this isomorphism respects \in .

From work of Awodey, Simpson et.al. it follows that

Th 5

 $U_{\mathcal{E}}$ is a model of CZF_{Exp}^{-} , i.e. CZF without Infinity and Fullness but with Exponentiation.

Countable Ordinals in $U(\mathcal{E})$

We associate with every countable ordinal α a global element $\hat{\alpha}$ of $U(\mathcal{E})$ as follows: if $\alpha = \sup_{n \in \omega} \alpha_n$ then let $\hat{\alpha}$ be the subpresheaf of $y(1) \times U(\mathcal{E})$ generated by the countable set $\{\langle n, \widehat{\alpha_n} \rangle \mid n \in \omega\}$ where $n : 1 \to N$ is the *n*-th numeral of nno N in \mathcal{E} .

One easily checks that $\widehat{\omega}$ witnesses the set-theoretic Infinity axiom. Thus we have that

Th 6 $U(\mathcal{E})$ is a model of CZF_{Exp} .

One easily checks that

Lemma 1

 $\hat{\alpha} \in U(\mathcal{E})_{\alpha}$ fails in $U(\mathcal{E})$ for $\alpha < \omega_1$. Thus, there is **no** set a in $U(\mathcal{E})$ such that $\hat{\alpha} \in a$ holds in $U(\mathcal{E})$ for all $\alpha < \omega_1$.

Fullness

For maps $a : A \to I$ and $b : B \to I$ in \mathcal{E} we write $M_I(a, b)$ for the collection of all subobjects $r : R \to A \times B$ such that $\pi_1 \circ r : R \to A$.

Type-Theoretic Fullness Axiom (TTFA) For all $a : A \to I$ and $b : B \to I$ in \mathcal{E} there exist a cover $\tilde{e} : \tilde{I} \to I$, a map $c : C \to \tilde{I}$ and $R \in M_C(c^*\tilde{e}^*A, c^*\tilde{e}^*B)$ such that for every $f : D \to \tilde{I}$ and $S \in M_D(f^*\tilde{e}^*A, f^*\tilde{e}^*B)$ there exists a cover $e : E \to D$ and a map $g : E \to C$ with fe = cg and $g^*R \subseteq e^*S$.

Th 7

If \mathcal{E} validates the type-theoretic fullness axiom TTFA then $U(\mathcal{E})$ validates the Fullness axiom of CZF.

"Good" Examples of \mathcal{E}

Th 8 If \mathcal{T} is the **typed pca** $Mod(K_2)$, $Mod(\mathcal{P}\omega)$ or QCB_0 (i.e. T_0 quotients of subspaces of $\mathcal{P}\omega$) then for the realizability model $RC(\mathcal{T})$, i.e. the ex/reg completion of $Asm(\mathcal{T})$, we have

- (1) $\operatorname{RC}(\mathcal{T})$ is a constructive ∞ -topos
- (2) $\operatorname{RC}(\mathcal{T})$ validates TTCA
- (3) $\operatorname{RC}(\mathcal{T})$ has no subobject classifier.

Proof (ideas)

(1) For any \mathcal{T} one knows that $\mathbf{RC}(\mathcal{T})$ is a constructive topos. Stable and disjoint countable sums exist in $\mathbf{RC}(\mathcal{T})$ since they exists in the categories $\mathbf{Mod}(K_2)$, $\mathbf{Mod}(\mathcal{P}\omega)$ and \mathbf{QCB}_0 .

(2) Essentially as in Aczel's verification Fullness w.r.t. his interpretation in type theory. (3) Lietz and S. have shown that RC(T) is a topos iff T has a universal type which is not

the case for the \mathcal{T} 's under consideration.

Failure of Full Separation 1

In CZF_{Exp} Brouwer's 2nd Number Class W_1 appears as an inductively defined subclass of the set $\omega^{(\omega^{\omega})}$, namely as the least C s.t.

(1) $\lambda f.0 \in C$

(2) if $F \in C$ then the functional

succ(F)(f) =
$$\begin{cases} 1 & \text{if } f(0) = 0\\ F(\lambda n.f(n+1)) & \text{otherwise} \end{cases}$$

is in C as well

(3) if $(F_n)_{n \in \omega}$ is a sequence in C then

$$\left(\sup_{n\in\omega}F_n\right)(f) = \begin{cases} 2 & \text{if } f(0) = 0\\ F_{f(0)-1}(\lambda n.f(n+1)) & \text{otherwise} \end{cases}$$

is in C as well.

By transfinite recursion over W_1 we define a class function $E: W_1 \rightarrow \text{Ord}$

$$E(t) = \begin{cases} \emptyset & \text{if } t = 0\\ E(t') \cup \{E(t')\} & \text{if } t = \operatorname{succ}(t')\\ \bigcup_{n \in \omega} E(t_n) & \text{if } t = \operatorname{sup}_{n \in \omega} t_n \end{cases}$$

Failure of Full Separation 2

Since \mathcal{E} has countable sums ω^{ω} contains all functions on ω and thus $\omega^{(\omega^{\omega})}$ contains all *continuous* functionals (corresponding to countably branching wellfounded trees).

Thus $U(\mathcal{E}) \models \hat{\alpha} \in E[W_1]$ for all $\alpha < \omega_1$. Thus, by Lemma 1, in $U(\mathcal{E})$ it does not hold that $E[W_1]$ is a set. If $U(\mathcal{E})$ validated Full Separation then $E[W_1]$ were a set

Th 9 If \mathcal{E} is a constructive ∞ -topos then Full Separation fails in $U(\mathcal{E})$.

Remark

Obviously, the class $E[W_1]$ is a subclass of the class ω_1 of all countable ordinals. Thus, in $U(\mathcal{E})$ the class ω_1 cannot be a set which means that REA, the Regular Extension axiom, fails in $U(\mathcal{E})$ since REA allows one to prove that ω_1 is a set.

Main Theorems

Theorem 10

If \mathcal{E} is a cocomplete topos validating TTFA then $U(\mathcal{E})$ is a model for CZF validating the Power Set axiom but refuting the Full Separation scheme.

Proof Immediate from Th 7 and Th 3 since the Powerset axiom holds whenever $\mathcal{P}(1)$ is a set.

Theorem 11

If \mathcal{T} is $Mod(K_2)$, $Mod(\mathcal{P}\omega)$ or QCB_0 then $U(\mathbf{RC}(\mathcal{T}))$ refutes both the Power Set axiom and the Full Separation scheme.

Proof Immediate from Th 10 and Th 8.

Theorem 12

If \mathcal{E} is the ex/reg-completion of $Mod(K_2)$ or $Mod(\mathcal{P}\omega)$ then $U(\mathcal{E})$ refutes both the Power Set axiom and the Full Separation scheme.

Proof Like for Th 11 since an analogue of Th 8 holds for the ex/reg-completions of $Mod(K_2)$ and $Mod(\mathcal{P}\omega)$.

Summary

- We have extended D. Scott's presheaf model for IZF to arbitrary sheaf models (Grothendieck toposes) thus simplifying M. Fourman's treatment.
- 2. Iterating a "small" version \mathcal{P}_s of the power functor \mathcal{P} in particular sheaf models we have obtained models of CZF refuting both Powerset and Full Separation.
- 3. In these models the class ω_1 is not a set and thus REA fails.
- 4. The site for the simplest such sheaf model is the *exact completion* of the category of countably based T_0 -spaces endowed with the countable cover topology.