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Aim of the talk

Previously (∼2004), R. Lubarsky, B. van den

Berg and I have (independently) constructed

realizability models for CZF which refute

the Power Set axiom but still validate the

Full Separation schema.

(CZF+Sep has strength of 2nd Order Arith.)

The aim of this talk is to describe

sheaf models for CZF

which always refute Full Separation and in

some natural cases also refute Power Set.

Our models arise as a variation of D. Scott’s

(pre)sheaf models for IZF but by iterating

a restricted powerset functor Ps instead of

the full powerset functor P of the (pre)sheaf

topos.
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Recap of IZF and CZF
Intuitionistic Zermelo Fraenkel set theory

IZF is obtained from ZF by dropping Excluded

Middle and replacing the Regularity axiom by

∈-induction.

Constructive Zermelo Fraenkel set theory

CZF is obtained from IZF by

(1) restricting the Separation scheme to

bounded formula

(2) replacing the Powerset axiom by the fol-

lowing Fullness axiom

(∃c⊆mv(a, b))(∀r∈mv(a, b))(∃s∈c) s ⊆ r

where mv(a, b) is the class of total real-

tions from a to b

(3) strengthening Replacement to

Strong Collection

(∃c)(∀~z)(
(∀x∈a)(∃y∈b)ϕ

)
⇒ (∃d∈c)M(x:a, y:d)ϕ

where M(x:a, y:b)ϕ(x, y, . . . ) stands for

(∀x∈a)(∃y∈b)ϕ ∧ (∀y∈b)(∃x∈a)ϕ(x, y, . . . ).
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Presheaf Models for IZF

As suggested by D. Scott (∼1980) for arbi-

trary small categories C in Ĉ = SetC
op

consider

the class-valued presheaf V (C) which is the

least fixpoint of P.

Recall that for X ∈ Ĉ the power object P(X)

is given by

P(X)(I) = SubĈ(y(I)×X)

where y(I) = C(−, I).

For a ∈ P(X)(I) and u : J → I

a·u = P(X)(u)(a) = {〈v, x〉 | 〈uv, x〉 ∈ a}

is the reindexing of A along u.

Equality and membership in V (C) are given

by the following forcing clauses

I  a ∈ b iff 〈idI , a〉 ∈ b

I  a = b iff for all u : J→I and c ∈ V (C)(J)

〈u, c〉 ∈ a implies J  c ∈ b·u
〈u, c〉 ∈ b implies J  c ∈ a·u

and forcing clauses for logic are as usual.
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Sheaf Models for IZF
In 1980 M. Fourman has shown how to inter-

pret IZF in cocomplete toposes E by con-

structing Vα in E for every ordinal α.

For the typical case of a Grothendieck topos

E = Sh(C,J ) a forcing definition using V (C)
can be obtained by modifying the clause for

elementhood as follows

I  a ∈ b iff there exists a J -cover (Ii
ui→ I)

and ci ∈ V (C)(Ii) s.t. for all i

Ii  a·ui = ci and 〈ui, ci〉 ∈ b

The clause for equality is as before and the

clauses for ⊥, ∨ and ∃ have to be modified

as usual in Kripke-Joyal semantics.

Theorem The (colimit of the) cumulative

hierachy in Sh(C,J ) is isomorphic to V (C)
modulo the equivalence relation = on V (C)
as given by forcing.

Proof (Idea)

Since 〈ui, ci〉 ∈ b is equivalent to 〈idIi
, ci〉 ∈ b·ui

the definition of ∈ (implicitly) perfoms J -

closure.
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“Getting Smaller” (1)

Instead of iterating the powerset functor P
on Ĉ we consider a subfunctor Pcg which is

defined as follows.

A presheaf X ∈ Ĉ is countably generated iff

there exists a countable (including the empty

one) family
(
xn ∈ X(In)

)
s.t. every x ∈ X(I)

is of the form x = xn·u for some u : I →
In. We write Subcg(X) for the collection of

countably generated subpresheaves of X

and define Pcg as

Pcg(X)(I) = Subcg(y(I)×X)

Now we may define the countably gener-

ated hierachy U(C) in Ĉ as

U(C)α =
⋃

β<α

Pcg(Vβ)

which stabilises at ω1, i.e. U(C)ω1 is the least

fixpoint of Pcg.
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“Getting Smaller” (2)

We have in mind the countable cover topol-

ogy on C when defining (by transfinite recur-

sion) the forcing clauses for = and ∈ as

I  a ∈ b iff there exists a countable family

(un, cn) in b such that (un)

covers I and for all n

dom(un)  cn = a·un

I  a = b iff for all u : J→I and c ∈ U(J)

it holds that

〈u, c〉 ∈ a implies J  c ∈ b·u
and

〈u, c〉 ∈ b implies J  c ∈ a·u.

for a, b ∈ U(E)(I).

For suitably chosen C the structure U(C)
with = and ∈ defined as above give rise to

models of CZF refuting both the Power

Set axiom and the Full Separation schema.

Next we explain what “suitably chosen” means:

6



Constructive Toposes
are categories E such that

(1) E is a Heyting category, i.e. is regular

and for all f : A → B in E the map f−1 :

SubE(B) → SubE(A) has a right adjoint ∀f

(2) E has stable and disjoint finite sums

(3) every equivalence relation r = 〈r1, r2〉 :

R � A × A appears as kernel pair of the co-

equalizer q : A _ A/R of r1 and r2

(4) E is locally cartesian closed (lccc), i.e.

for every f : A → B the pullback functor f∗ :

E/B → E/A has a right adjoint Πf .

Regular categories satisfying conditions (2)

and (3) are called pretoposes provided co-

equalizers of equivalence relations are stable

under pullbacks. This latter condition follows

from (4) because f∗ has a right adjoint and

thus preserves colimits.

We need constructive ∞-toposes, i.e. con-

structive toposes with stable and disjoint count-

able sums. They have a natural numbers

object (nno) N =
∐

ω 1.
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A More Abstract View (1)

In order to prove soundness of our model

we need a more abstract view of it.

Let E be some fixed constructive ∞-topos en-

dowed with the countable cover topology:

a sieve S on I ∈ E covers I iff there exists

a countable family (un : In → I) in S s.t. for

every u : J → I in S there exists a v : J → In

with u = unv. This topology is subcanonical,

i.e. all representable presheaves are sheaves.

We write Sh∞(E) for the category of sheaves

over E w.r.t. countable cover topology.

Following a suggestion of Jean Bénabou we

identify “small” with representable and call

a map f : Y → X “small”, i.e. a family of

small objects, iff for all x : y(I) → X

y(J) - Y

y(I)

y(u)

?

x
- X

f

?

for some u : J → I in E.
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A More Abstract View (2)
For interpreting bounded formulas as sets,
i.e. small objects, we require the equality pred-
icates to be small maps. We call an object X

separated iff δX is small and denote the en-
suing full subcategory of Sh∞(E) by Idl∞(E).
We write SE for the collection of small maps
in Idl∞(E).
Idl∞(E) is thought of as the category of
classes and SE as the collection of all fami-
lies of sets indexed by classes. Idl∞(E) is a
Heyting category and SE satisfies the axioms

(S1) SE is closed under composition and con-
tains all isos

(S2) SE is stable under pullbacks along arbi-
trary morphisms of E
(S3) all diagonals δA : A � A×A are in SE
(S4) if e is a cover, i.e. regular epi, and f ◦e ∈
SE then f ∈ SE
(S5) if f : C → A and g : D → A are in SE

then [f, g] : C + D → A is also in SE
Remark Under (S1) and (S2) condition (S3)
is equivalent to the requirement that g ∈ SE
whenever f and fg are in SE.
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A More Abstract View (3)
The following characterisation of Idl∞(E) within

Sh∞(E) is useful later when constructing a

universe corresponding to U(E).

Th 1 For objects A of Sh(E) t.f.a.e.

(1) A is in Idl∞(E)

(2) A arises as colimit in Ê of an ∞-ideal di-

agram, i.e. an ω1-directed diagram of monos

between representable objects

(3) for every f : y(I) → A its image in Sh∞(E)
is representable.

NB An analogous theorem was suggested by

A. Joyal and proved by S. Awodey et.al. for

Sh(E), the category of sheaves w.r.t. the fi-

nite cover topology on E, the full subcat-

egory Idl(E) of separated objects and ideal

diagram, i.e. ω0-directed diagrams of monos

between representable objects.

We can’t take this because in the ensuing

model of set theory the ordinal ω is not a set

though sets host a nno!
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A More Abstract View (4)

Next we consider a small powerset functor

Ps on Idl∞(E) whose initial fixpoint will be

the universe corresponding to U(E).

A relation r : R � A × I is called small iff

π2 ◦ r : R → I is in SE, i.e. r is small iff it is

a(n I-indexed) family of small subobjects of

A. Obviously, for u : J → I in E the relation

(A×u)∗r is also small.

Th 2 For every A in Idl∞(E) there is a small

relation ∈A � A × Ps(A) such that for every

small relation r : R � A × I there exists a

unique map % : I → Ps(A) in Idl∞(E) s.t.

R -∈A

A× I

r

?

?

A× %
- A× Ps(A)

?

?

The object Ps(A) is called the power class

of A. Its elements are subsets of A. But in

general Ps(A) is not small even if A is small.
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A More Abstract View (5)

Yoneda tells us that

Ps(A)(I) ∼= Idl∞(E)(y(I),Ps(A)) ∼=
∼= {r : R � A×y(I) | r small relation}

Since the powerset functor P for Sh∞(E) is

given by P(A)(I) = SubSh∞(E)(A×y(I)) it fol-

lows that

Ps(A) ⊆ P(A)

for A ∈ Sh∞(E).

Remark Notice that P(A) is the class of sub-

classes of A (an “impredicative” notion of

class is available in Sh∞(E) !) whereas Ps(A)

is the subclass of P(A) consisting of (families

of) subsets of A.

Th 3 Ps(1) is small iff E is a topos.

Proof. We have

Ps(1)(I) ∼= {repr. subobj. of y(I)} ∼= SubE(I).
Thus Ps(1) is small iff SubE is representable

iff E is a topos.
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A More Abstract View (6)

Th 4 The functor Ps : Idl∞(E) → Idl∞(E)
preserves ∞-ideal colimits.

Proof (Sketch)

If y(J) ∼= R
r

� A × y(I) then by Th.1(3) the

map r1 = π1 ◦ r : y(J) → A factors through

m : y(K) � A via some regular epimorphism

e : y(J) _ y(K) and we have

y(J)-
〈e, r2〉

- y(K)× y(I)

A× y(I)

m× y(I)

?

?
-

r
-

and y(K)×y(I) ∼= y(K×I).

Thus, if A is the ∞-ideal colimit of (y(Ai))i∈I

then

Ps(colimi∈I)
∼= colimi∈IPs(y(Ai))
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A More Abstract View (7)

Since Ps preserves ∞-ideal colimits (Th 4)

it has an initial fixpoint UE which is attained

after ω1 iterations, i.e.

UE = colimα<ω1P
α
s (0)

Interpreting ∈ as

∈UE� UE × Ps(UE)
∼= UE × UE

and equality as δUE gives rise to a first order

structure (in Idl∞(E) thus in Ê) which can be

shown to be isomorphic to the forcing model

U(E) modulo = as defined by forcing.

More precisely, UE is isomorphic to U(E)/∼ –

where a ∼ b means I  a = b for a, b ∈ U(E) –

and this isomorphism respects ∈.

From work of Awodey, Simpson et.al. it fol-

lows that

Th 5

UE is a model of CZF−Exp, i.e. CZF without

Infinity and Fullness but with Exponentiation.
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Countable Ordinals in U(E)

We associate with every countable ordinal α

a global element α̂ of U(E) as follows: if α =

supn∈ω αn then let α̂ be the subpresheaf of

y(1) × U(E) generated by the countable set

{〈n, α̂n〉 | n ∈ ω} where n : 1 → N is the n-th

numeral of nno N in E.

One easily checks that ω̂ witnesses the set-

theoretic Infinity axiom. Thus we have that

Th 6 U(E) is a model of CZFExp.

One easily checks that

Lemma 1

α̂ ∈ U(E)α fails in U(E) for α < ω1. Thus,

there is no set a in U(E) such that α̂ ∈ a

holds in U(E) for all α < ω1.
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Fullness

For maps a : A → I and b : B → I in E we

write MI(a, b) for the collection of all subob-

jects r : R � A×B such that π1 ◦ r : R _ A.

Type-Theoretic Fullness Axiom (TTFA)

For all a : A → I and b : B → I in E there

exist a cover ẽ : Ĩ _ I, a map c : C → Ĩ

and R ∈ MC(c∗ẽ∗A, c∗ẽ∗B) such that for every

f : D → Ĩ and S ∈ MD(f∗ẽ∗A, f∗ẽ∗B) there

exists a cover e : E _ D and a map g : E → C

with fe = cg and g∗R ⊆ e∗S.

Th 7

If E validates the type-theoretic fullness ax-

iom TTFA then U(E) validates the Fullness

axiom of CZF.
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“Good” Examples of E

Th 8 If T is the typed pca Mod(K2),

Mod(Pω) or QCB0 (i.e. T0 quotients of sub-

spaces of Pω) then for the realizability model

RC(T ), i.e. the ex/reg completion of Asm(T ),

we have

(1) RC(T ) is a constructive ∞-topos

(2) RC(T ) validates TTCA

(3) RC(T ) has no subobject classifier.

Proof (ideas)

(1) For any T one knows that RC(T ) is a

constructive topos. Stable and disjoint count-

able sums exist in RC(T ) since they exists

in the categories Mod(K2), Mod(Pω) and

QCB0.

(2) Essentially as in Aczel’s verification Full-

ness w.r.t. his interpretation in type theory.

(3) Lietz and S. have shown that RC(T ) is a

topos iff T has a universal type which is not

the case for the T ’s under consideration.
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Failure of Full Separation 1

In CZFExp Brouwer’s 2nd Number Class W1

appears as an inductively defined subclass of

the set ω(ωω), namely as the least C s.t.

(1) λf.0 ∈ C

(2) if F ∈ C then the functional

succ(F )(f) =

{
1 if f(0) = 0

F (λn.f(n+1)) otherwise

is in C as well

(3) if (Fn)n∈ω is a sequence in C then

(
sup
n∈ω

Fn

)
(f) =

{
2 if f(0) = 0

Ff(0)−1(λn.f(n+1)) otherwise

is in C as well.

By transfinite recursion over W1 we define a

class function E : W1 → Ord

E(t) =


∅ if t = 0

E(t′) ∪ {E(t′)} if t = succ(t′)⋃
n∈ω E(tn) if t = supn∈ω tn
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Failure of Full Separation 2

Since E has countable sums ωω contains all

functions on ω and thus ω(ωω) contains all

continuous functionals (corresponding to count-

ably branching wellfounded trees).

Thus U(E) � α̂ ∈ E[W1] for all α < ω1.

Thus, by Lemma 1, in U(E) it does not hold

that E[W1] is a set. If U(E) validated Full

Separation then E[W1] were a set

Th 9 If E is a constructive ∞-topos then

Full Separation fails in U(E).

Remark

Obviously, the class E[W1] is a subclass of

the class ω1 of all countable ordinals. Thus,

in U(E) the class ω1 cannot be a set which

means that REA, the Regular Extension ax-

iom, fails in U(E) since REA allows one to

prove that ω1 is a set.
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Main Theorems
Theorem 10

If E is a cocomplete topos validating TTFA

then U(E) is a model for CZF validating the

Power Set axiom but refuting the Full Sepa-

ration scheme.

Proof Immediate from Th 7 and Th 3 since

the Powerset axiom holds whenever P(1) is

a set.

Theorem 11

If T is Mod(K2), Mod(Pω) or QCB0 then

U(RC(T )) refutes both the Power Set axiom

and the Full Separation scheme.

Proof Immediate from Th 10 and Th 8.

Theorem 12

If E is the ex/reg-completion of Mod(K2) or

Mod(Pω) then U(E) refutes both the Power

Set axiom and the Full Separation scheme.

Proof Like for Th 11 since an analogue of Th

8 holds for the ex/reg-completions of Mod(K2)

and Mod(Pω).
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Summary

1. We have extended D. Scott’s presheaf

model for IZF to arbitrary sheaf models

(Grothendieck toposes) thus simplifying

M. Fourman’s treatment.

2. Iterating a “small” version Ps of the power

functor P in particular sheaf models we

have obtained models of CZF refuting

both Powerset and Full Separation.

3. In these models the class ω1 is not a set

and thus REA fails.

4. The site for the simplest such sheaf model

is the exact completion of the category of

countably based T0-spaces endowed with

the countable cover topology.
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