Krivine's Classical Realizability from a Categorical Perspective

Thomas Streicher (TU Darmstadt)

January 2012

The Scenario

Krivine's Classical Realizability will turn out as a generalization of forcing as known from set theory.

Following Hyland with every **partial combinatory algebra** (pca) \mathbb{A} one associates a **realizability topos** $RT(\mathbb{A})$. However,

RT(A) Groth. topos or boolean $\Rightarrow A$ trivial pca

thus classical realizability is not given by a pca.

However, the **order pca**'s of J. van Oosten and P. Hofstra provide a common generalization of realizability and Heyting valued models. We will use them for capturing classical realizability categorically.

Classical Realizability (1)

The collection of (possibly open) terms is given by the grammar

$$t ::= x \mid \lambda x.t \mid ts \mid \mathsf{cc}\, t \mid \mathsf{k}_{\pi}$$

where π ranges over **stacks** (i.e. lists) of closed terms. A **quasi-proof** is a term without occurrences of k. We write Λ for the set of closed terms, QP for the set of closed quasi-proofs and Π for the set of stacks of closed terms. A **process** is a pair $t * \pi$ with $t \in \Lambda$ and $\pi \in \Pi$.

The operational semantics of Λ is given by the relation \succeq (head reduction) on processes defined inductively by the clauses

- $(pop) \lambda x.t * s.\pi \succeq t[s/x] * \pi$
- (push) $ts*\pi \succeq t*s.\pi$
- (store) $\operatorname{cc} t * \pi \succeq t * \mathsf{k}_{\pi}.\pi$
- (restore) $k_{\pi} * t.\pi' \succeq t * \pi$

Classical Realizability (2)

This language has a natural interpretation within the recursive domain

$$D \cong \mathbf{\Sigma}^{\mathsf{List}(D)} \cong \prod_{n \in \omega} \mathbf{\Sigma}^{D^n}$$

We have $D\cong \Sigma \times D^D$. Thus D^D is a retract of D and, accordingly, D is a model for λ_{β} -calculus. The interpretation of Λ is given by

where

$$\operatorname{ret}(k)\langle\rangle = \top \qquad \operatorname{ret}(k)\langle d, k'\rangle = d(k)$$
$$[\![\langle\rangle]\!] \varrho = \langle\rangle \qquad [\![t.\pi]\!]_{\varrho} = \langle[\![t]\!]_{\varrho}, [\![\pi]\!]_{\varrho}\rangle$$

Classical Realizability (3)

A **pole** is a set $\bot\!\!\!\bot$ of processes s.t. $q \in \bot\!\!\!\bot$ whenever $q \succeq p \in \bot\!\!\!\bot$. We write $t \perp \pi$ for $t * \pi \in \bot\!\!\!\bot$. For $X \subseteq \Pi$ and $Y \subseteq \Lambda$ we put

$$X^{\perp} = \{ t \in \Lambda \mid \forall \pi \in X. \ t \perp \pi \} \qquad Y^{\perp} = \{ \pi \in \Pi \mid \forall t \in Y. \ t \perp \pi \}$$

Obviously $(-)^{\perp}$ is antitonic and $Z \subseteq Z^{\perp \perp}$ and thus $Z^{\perp} = Z^{\perp \perp \perp}$.

For a pole $\bot\bot$ second order logic over a set M of individuals is interpreted as follows: n-ary predicate variables range over functions $M^n \to \mathcal{P}(\Pi)$ and formulas A are interpreted as $||A|| \subseteq \Pi$

$$||X(t_{1},...,t_{n})||_{\varrho} = \varrho(X)([[t_{1}]]_{\varrho},...,[[t_{1}]]_{\varrho})$$

$$||A \to B||_{\varrho} = |A|_{\varrho}.||B||_{\varrho}$$

$$||\forall x A(x)||_{\varrho} = \bigcup_{a \in M} ||A||_{\varrho[a/x]}$$

$$||\forall X A[X]||_{\varrho} = \bigcup_{R \in \mathcal{P}(\Pi)^{M^{n}}} ||A||_{\varrho[R/X]}$$

where $|A|_{\varrho} = |A|_{\varrho}^{\perp}$. The proposition A is **valid** iff $|A|_{\varrho} \cap QP \neq \emptyset$.

Classical Realizability (4)

We have
$$|\forall XA| = \bigcap_{R \in \mathcal{P}(\Pi)^{M^n}} |A[R/X]|$$
.

In general $|A \rightarrow B|$ is a **proper** subset of

$$|A| \rightarrow |B| = \{t \in \Lambda \mid \forall s \in |A| \ ts \in |B|\}$$

unless $ts * \pi \in \bot \bot \Rightarrow t * s.\pi \in \bot \bot$

But for every $t \in |A| \rightarrow |B|$ its η -expansion $\lambda x.tx \in |A \rightarrow B|$ and, of course, we have $|A \rightarrow B| = |A| \rightarrow |B|$ whenever $\bot\!\!\!\bot$ is also *closed under head reduction*, i.e. $\bot\!\!\!\!\bot \ni p \succeq q$ implies $q \in \bot\!\!\!\!\bot$.

One may even assume that $\bot\bot$ is stable w.r.t. the semantic equality $=_D$ induced by the model D. However, there are interesting situations where one has to go beyond such a framework.

Classical Realizability (5)

For realizing the Countable Axiom of Choice CAC Krivine introduced a new language construct χ^* with the reduction rule

$$\chi^* * t.\pi \succeq t * n_t.\pi$$

where n_t is the Church numeral representation of a Gödel number for t, c.f. quote(t) of LISP.

NB quote is in conflict with β -reduction!

NB The term χ^* realizes *Krivine's Axiom* $\exists S \forall x \Big(\forall n^{\text{Int}} Z(x, S_{x,n}) \to \forall X Z(x, X) \Big)$ which entails CAC.

Axiomatic Classical Realizability (1)

Instead of pca's we consider **Abstract Krivine Structures** (aks's):

- a set Λ of "terms" together with a binary application operation (written as juxtaposition) and distinguished elements K, S, cc $\in \Lambda$
- ullet a subset QP $\subseteq \Lambda$ of "quasi-proofs" closed under application and containing K, S and cc as elements
- a set Π of "stacks" together with a push operation (push) from $\Lambda \times \Pi$ to Π (written $t.\pi$) and a unary operation $k: \Pi \to \Lambda$
- a "pole" $\bot\!\!\!\bot\subseteq\Lambda\times\Pi$ satisfying
 - (S1) $ts \star \pi \in \coprod$ whenever $t \star s.\pi \in \coprod$ (S2) $K \star t.s.\pi \in \coprod$ whenever $t \star \pi \in \coprod$ (S3) $S \star t.s.u.\pi \in \coprod$ whenever $tu(su) \star \pi \in \coprod$ (S4) $cc \star t.\pi \in \coprod$ whenever $t \star k_{\pi}.\pi$ in \coprod (S5) $k_{\pi} \star t.\pi' \in \coprod$ whenever $t \star \pi \in \coprod$.

Axiomatic Classical Realizability (2)

A proposition A is given by a subset $||A|| \subseteq \Pi$. Its set of realizers is

$$|A| = ||A||^{\perp} = \{ t \in \Lambda \mid \forall \pi \in ||A|| \ t \star \pi \in \bot \bot \}$$

and A is valid iff $|A| \cap \mathsf{QP} \neq \emptyset$. Logic is interpreted as follows

$$||R(\vec{t})|| = R([\vec{t}])$$

$$||A \rightarrow B|| = |A|.||B|| = \{t.\pi \mid t \in |A|, \pi \in ||B||\}$$

$$||\forall x A(x)|| = \bigcup_{a \in M} ||A(a)||$$

$$||\forall X A(X)|| = \bigcup_{R \in \mathcal{P}(\Pi)^{M^n}} ||A(R)||$$

where M is the underlying set of the model.

Axiomatic Classical Realizability (3)

One could define propositions more restrictively as

$$\mathcal{P}_{\perp\perp}(\Pi) = \{ X \in \mathcal{P}(\Pi) \mid X = X^{\perp\perp} \}$$

without changing the meaning of |A| for closed formulas.

Notice that $\mathcal{P}_{\perp \perp}(\Pi)$ is in 1-1-correspondence with

$$\mathcal{P}_{\perp\perp}(\Lambda) = \{ X \in \mathcal{P}(\Lambda) \mid X = X^{\perp\perp} \}$$

via $(-)^{\perp}$.

In case (S1) holds as an equivalence, i.e. we have

(SS1)
$$ts \star \pi$$
 in $\bot\!\!\!\bot$ iff $t \star s.\pi$ in $\bot\!\!\!\bot$

one may define | · | directly as

Axiomatic Class Realiz. (4)

$$|R(\vec{t})| = R([\![\vec{t}]\!])$$

$$|A \rightarrow B| = |A| \rightarrow |B| = \{t \in L \mid \forall s \in |A| \ ts \in |B|\}$$

$$|\forall x A(x)| = \bigcap_{a \in M} |A(a)|$$

$$|\forall X A(X)| = \bigcap_{R \in \mathcal{P}_{\perp \perp}(\Lambda)^{M^n}} |A(R)|$$

and it coincides with the previous definition for closed formulas.

Abstract Krivine structures validating the reasonable assumption (SS1) are called **strong abstract Krivine structures** (saks's).

Axiomatic Class Realiz. (5)

Obviously, for $A, B \in \mathcal{P}_{\perp \perp}(\Lambda)$ we have

$$|A \rightarrow B| \subseteq |A| \rightarrow |B| = \{t \in \Lambda \mid \forall s \in |A| \ ts \in |B|\}$$

But for any $t \in |A| \to |B|$ we have

$$\mathsf{E}t \in |A {\rightarrow} B|$$

where E = S(KI) with I = SKK.

Axiomatic Class Realiz. (5a)

Proof. One easily checks that

$$1 * t.\pi \in \bot \bot \Leftarrow t * \pi \in \bot$$

and thus we have

$$\mathsf{E}t * s.\pi \in \bot\!\!\!\bot \iff ts * \pi \in \bot\!\!\!\!\bot$$

because

$$\mathsf{E}t * s.\pi \in \bot\!\!\!\bot \iff \mathsf{K}\mathsf{I}s(ts).\pi \in \bot\!\!\!\bot \iff \mathsf{I}*ts.\pi \in \bot\!\!\!\bot \iff ts*\pi \in \bot\!\!\!\bot$$

Then for $s \in |A|$, $\pi \in |B|$ we have $Et * s.\pi \in \bot$ because $ts * \pi \in \bot$ since $t \in |A| \to |B|$.

Thus $\mathsf{E} t \in |A {\rightarrow} B|$ as desired.

Forcing as an Instance (1)

Let \mathbb{P} a \wedge -semilattice (with top element 1) and \mathcal{D} a downward closed subset of \mathbb{P} . We write pq for $p \wedge q$.

Such a situation gives rise to a saks where

- $\Lambda = \Pi = \mathbb{P}$
- $QP = \{1\}$
- application and the push operation are interpreted as \wedge in $\mathbb P$
- k is the identity on $\mathbb P$ and constants K, S and C are interpreted as 1
- $\perp \perp = \{(p,q) \in \mathbb{P}^2 \mid pq \in \mathcal{D}\}.$

We write $p \perp q$ for $p * q \in \bot$, i.e. $pq \in \mathcal{D}$.

NB This is **not** a pca since application is commutative and associative and thus a = kab = kba = b.

Forcing as an Instance (2)

For $X \subseteq \mathbb{P}$ we have

$$X^{\perp} = \{ p \in \mathbb{P} \mid \forall q \in X \ pq \in \mathcal{D} \}$$

which is downward closed and contains \mathcal{D} as a subset. For such X we have

$$X^{\perp} = \{ p \in \mathbb{P} \mid \forall q \le p \ (q \in X \Rightarrow q \in \mathcal{D}) \}$$

Thus, for arbitrary $X \subseteq \mathbb{P}$ we have

$$X^{\perp \perp} = \{ p \in \mathbb{P} \mid \forall q \leq p \ (q \in X^{\perp} \Rightarrow q \in \mathcal{D}) \}$$
$$= \{ p \in \mathbb{P} \mid \forall q \leq p \ (q \notin \mathcal{D} \Rightarrow q \notin X^{\perp}) \}$$
$$= \{ p \in \mathbb{P} \mid \forall q \leq p \ (q \notin \mathcal{D} \Rightarrow \exists r \leq q \ (r \notin \mathcal{D} \land r \in X)) \}$$

as familiar from Cohen forcing.

Forcing as an Instance (3)

Accordingly, we define **propositions** as $A \subseteq \mathbb{P}$ with $A = A^{\perp \perp}$.

In case $\mathcal{D}=\{0\}$ then $\mathbb{P}^{\uparrow}=\mathbb{P}\setminus\{0\}$ is a conditional \land -semilattice and propositions are in 1-1-correspondence with *regular* subsets A of \mathbb{P}^{\uparrow} , i.e. $p\in A$ whenever $\forall q\leq p\; \exists r\leq q\; r\in A$, as in **Cohen forcing** over \mathbb{P}^{\uparrow} .

For propositions A, B, C we have

$$A \to B := \{ p \in \mathbb{P} \mid \forall q \in A \ pq \in B \} = \{ p \in \mathbb{P} \mid \forall q \leq p \ (q \in A \Rightarrow q \in B) \}$$
 and thus
$$C \subseteq A \to B \quad \text{iff} \quad C \cap A \subseteq B$$

The least proposition \bot is given by $\mathbb{P}^{\bot} = \mathcal{D}$ and thus we have

$$\neg A \equiv A \to \bot = \{ p \in \mathbb{P} \mid \forall q \in A \ pq \in \mathcal{D} \} = A^{\bot}$$

Characterization of Forcing

One can show that a saks arises (up to iso) from a downward closed subset of a \land -semilattice iff

- (1) $k: \Pi \to \Lambda$ is a bijection
- (2) application is associative, commutative and idempotent and has a neutral element 1
- (3) application coincides with the push operation (when identifying Λ and Π via k).

Remark The downset $\mathcal{D} = \{t \in \Lambda \mid (t, 1) \in \bot \}$ (where 1 in Π via k). In this sense forcing = commutative realizability

AKS's as total OPCAs (1)

Hofstra and van Oosten's notion of **order partial combinatory algebra** (opca) generalizes both pca's and complete Heyting algebras (cHa's).

We will show how every aks can be organised into a total opca.

A **total opca** is a triple $(\mathbb{A}, \leq, \bullet)$ where \leq is a partial order on \mathbb{A} and \bullet is a binary monotone operation on \mathbb{A} such that for some $k, s \in \mathbb{A}$

$$k \bullet a \bullet b \le a$$
 $s \bullet a \bullet b \bullet c \le a \bullet c \bullet (b \bullet c)$

for all $a, b, c \in \mathbb{A}$.

AKS's as total OPCAs (2)

With every aks we may associate the total opca whose underlying set is $\mathcal{P}_{\perp \perp}(\Pi)$, where $a \leq b$ iff $a \supseteq b$ and application is defined as

$$a \bullet b = \{ \pi \in \Pi \mid \forall t \in |a|, s \in |b| \ t * s.\pi \in \bot \bot \}^{\bot \bot}$$

where $|a| = a^{\perp}$. Obviously $a \leq b$ iff $|a| \subseteq |b|$.

NB In case of a saks we have

$$|a \bullet b| = \{ts \mid t \in |a|, s \in |b|\}^{\perp \perp}$$

Lemma 1

From $a \leq b \rightarrow c$ it follows that $a \bullet b \leq c$.

Lemma 2

If $t \in |a|$ and $s \in |b|$ then $ts \in |a \bullet b|$.

$(\mathcal{P}_{\perp \perp}(\Pi), \supset, \bullet)$ is a total **OPCA**

One easily shows that $\{K\}^{\perp}ab \leq a$.

For showing that $\{S\}^{\perp} \bullet a \bullet b \bullet c \leq a \bullet c \bullet (b \bullet c)$ it suffices by (multiple applications of) Lemma 1 to show that $s \leq a \to b \to c \to (a \bullet c \bullet (b \bullet c))$. It suffices to show that

$$S \in [a \to b \to c \to (a \bullet c \bullet (b \bullet c))]$$

For this purpose suppose $t \in |a|$, $s \in |b|$, $u \in |c|$ and $\pi \in a \bullet c \bullet (b \bullet c)$. Applying Lemma 2 iteratively we have $tu(su) \in |a \bullet c \bullet (b \bullet c)|$ and thus $tu(su) * \pi \in \bot$. Since \bot is closed under expansion it follows that $S * t.s.u.\pi \in \bot$ as desired.

AKS's as total OPCAs (3)

A **filter** in a total opca $(\mathbb{A}, \leq, \bullet)$ is a subset Φ of \mathbb{A} closed under \bullet and containing (some choice of) k and s (for \mathbb{A}).

- (1) In case of a saks induced by a downclosed set \mathcal{D} in a \wedge -semilattice \mathbb{P} a natural choice of a filter is $\{\mathbb{P}\}$.
- (2) $\Phi = \{a \in \mathcal{P}_{\perp \perp}(\Pi) \mid |a| \cap QP \neq \emptyset\}$ is a filter on $\mathcal{P}_{\perp \perp}(\Pi)$ by Lemma 2.

With a filtered opca one may associate a Set-indexed preorder $[-, \mathbb{A}]_{\Phi}$

- $[I, A]_{\Phi} = A^I$ is the set of all functions from set I to A
- ullet endowed with the preorder $\ arphi \vdash_I \psi \ \ \ \ iff \ \ \exists a \in \Phi \ \forall i \in I \ \ a \bullet \varphi_i \leq \psi_i$
- for $u: J \to I$ the **reindexing map** $[u, \mathbb{A}]_{\Phi} = u^* : \mathbb{A}^I \to \mathbb{A}^J$ sends φ to $u^*\varphi = (\varphi_{u(j)})_{j \in J}$.

Krivine Tripos (1)

In case \mathbb{A} arises from an AKS and $\Phi = \{a \in \mathcal{P}_{\perp \perp}(\Pi) \mid |a| \cap \mathbb{QP} \neq \emptyset\}$ the indexed preorder $[-, \mathbb{A}]_{\Phi}$ is a **tripos**, i.e.

- ullet all $[I,\mathbb{A}]_{\Phi}$ are pre-Heyting-algebras whose structure is preserved by reindexing
- for every $u: J \to I$ in Set the reindexing map u^* has a left adjoint \exists_u and a right adjoint \forall_u satisfying (Beck-)Chevalley condition
- there is a generic predicate $T \in [\Sigma, \mathbb{A}]_{\Phi}$, namely $\Sigma = \mathbb{A}$ and $T = \mathrm{id}_{\mathbb{A}}$, of which all predicates arise by reindexing since $\varphi = \varphi^* \mathrm{id}_{\mathbb{A}}$

It coincides with Krivine's Classical Realizability since for $\varphi, \psi \in [M, \mathbb{A}]_{\Phi}$

$$\varphi \vdash_M \psi \quad \text{iff} \quad \exists t \in \mathsf{QP} \, \forall i \in M \, \, t \in |\varphi_i \to \psi_i|$$

Krivine Tripos (2)

Proof:

Suppose $\varphi \vdash_M \psi$. Then there exists $a \in \Phi$ such that $\forall i \in M \ a \bullet \varphi_i \leq \psi_i$. For all $i \in M$, $u \in |a|$ and $v \in |\varphi_i|$ by Lemma 2 we have $uv \in |a \bullet \varphi_i| \subseteq |\psi_i|$. Let $u \in |a| \cap \mathsf{QP}$. Then for all $i \in M$ we have $u \in |\varphi_i| \to |\psi_i|$ and thus $\mathsf{E} u \in |\varphi_i| \to |\psi_i|$. Thus $t = \mathsf{E} u \in \mathsf{QP}$ does the job.

Suppose there exists a $t \in QP$ such that $\forall i \in M \ t \in |\varphi_i \to \psi_i|$. Then we have $\forall i \in M \ \{t\}^{\perp \perp} \subseteq |\varphi_i \to \psi_i|$. Thus, for $a = \{t\}^{\perp} \in \Phi$ we have

$$\forall i \in M \forall u \in |a| \forall v \in |\varphi_i| \forall \pi \in \psi_i \ u * v . \pi \in \bot$$

from which it follows that

$$\forall i \in M \ a \bullet \varphi_i \leq \psi_i$$

i.e. $\varphi \vdash_M \psi$ as desired.

Forcing in Classical Realizability (1)

Let P be a meet-semilattice and C an upward closed subset of P. With every $X \subseteq P$ one associates*

$$|X| = \{ p \in P \mid \forall q \left(\mathsf{C}(pq) \to X(q) \right) \}$$

Such subsets of P are called propositions. We say

$$p$$
 forces X iff $p \in |X|$

and want to have that

$$p ext{ forces } X \to Y ext{ iff } \forall q (|X|(q) \to |Y|(pq))$$

 $p ext{ forces } \forall i \in I.X_i ext{ iff } \forall i \in I. p ext{ forces } X_i$

^{*}Traditionally, one would associate with X the set $X^{\perp} = \{p \in P \mid \forall q \in X \neg C(pq)\}$. But, classically, we have $|X| = (P \setminus X)^{\perp}$.

Forcing in Classical Realizability (2)

Apparently, we have

$$p ext{ forces } X o Y ext{ iff}$$
 $\forall q (|X|(q) o \forall r (\mathsf{C}(pqr) o Y(r))) ext{ iff}$ $\forall q, r (\mathsf{C}(pqr) o |X|(q) o Y(r)) ext{ iff}$ $p \in \left| \{qr \mid |X|(q) o Y(r)\} \right|$

$$p ext{ forces } \forall i \in I.X_i ext{ iff } p \in \left| \bigcap_{i \in I} X_i \right|$$

telling us how to interpret \rightarrow and \forall .

Forcing in Classical Realizability (3)

Actually, in most cases P is not a meet-semilattice **but** it is so "from point of view" of $C \subseteq P$, i.e. we have a binary operation on P and an element $1 \in P$ such that

$$C(p(qr)) \leftrightarrow C((pq)r)$$

$$C(pq) \leftrightarrow C(qp)$$

$$C(p) \leftrightarrow C(pp)$$

$$C(1p) \leftrightarrow C(p)$$

$$\left(C(p) \leftrightarrow C(q)\right) \rightarrow \left(C(pr) \leftrightarrow C(qr)\right)$$

together with

$$C(pq) \to C(p)$$

expressing that C is upward closed.

Forcing in Classical Realizability (3a)

On P we may define a congruence

$$p \simeq q \equiv \forall r. (C(rp) \leftrightarrow C(rq))$$

w.r.t. which P is a commutative idempotent monoid, i.e. a meet-semilattice, of which C is an upward closed subset.

Thus, on P we may consider the partial order relation $p \leq q$ defined as $p \simeq pq$ which is equivalent to $\forall r. (C(rp) \to C(rq))$.

Forcing in Classical Realizability (4)

We have seen that p forces $X \to Y$ iff $\forall q, r (C(pqr) \to |X|(q) \to Y(r))$ Thus a term t realizes p forces $X \to Y$ iff

$$(\dagger) \quad \forall q, r \forall u \in \mathsf{C}(pqr) \forall s \in |X|(q) \forall \pi \in Y(r) \ t * u.s.\pi \in \bot \bot$$

Thus, one might want to define when a pair (t,p) realizes $X \to Y$.

For this purpose one has to find an aks structure whose term part is $\Lambda \times P$. We procrustinate the definition of application. The set of quasi-proofs is given by $QP \times \{1\}$. The set of stacks is given by $\Pi \times P$ with $(t,p).(\pi,q)=(t.\pi,pq)$. From $\bot\!\!\!\bot$ one defines a new pole $\bot\!\!\!\bot$ as

$$(t,p)*(\pi,q) \in \coprod \quad \text{iff} \quad \forall u \in \mathsf{C}(pq) \ t*\pi^u \in \coprod$$

where π^u is obtained from π by inserting u at its bottom.

Forcing in Classical Realizability (4a)

Thus, we have

$$\begin{array}{l} (t,p) \in |X \to Y| \\ \text{iff} \\ \forall (s,q) \in |X| \forall (r,\pi) \in Y \ (t,p) * (s,q).(\pi,r) \in \bot \bot \\ \text{iff} \\ \forall (s,q) \in |X| \forall (r,\pi) \in Y \forall u \in \mathsf{C}(pqr) \ t * s.\pi^u \in \bot \bot \end{array}$$

in accordance with explication (†) of t realizes p forces $X \to Y$ as

$$\forall q, r \forall u \in \mathsf{C}(pqr) \forall s \in |X|(q) \forall \pi \in Y(r) \ t * u.s.\pi \in \bot$$

Forcing in Classical Realizability (5)

In order to jump back and forth between

t realizes p forces A and
$$(t', p) \in |A|$$

one needs "read" and "write" constructs in the original AKS, i.e. command χ and χ' s.t.

$$(\text{read}) \qquad \qquad \chi * t.\pi^s \quad \succeq \quad t * s.\pi$$

(write)
$$\chi' * t.s.\pi \succeq t * \pi^s$$

Using these one can transform t into t' and $vice\ versa$.

Krivine concludes from this that for **realizing forcing one needs global memory**.

Forcing in Classical Realizability (6)

Now we can define application for the new aks. Let α be a uniform realizer of $C((pq)r) \to C(p(qr))$ and $\underline{\alpha}$ a term with

$$\underline{\alpha} * t.\pi^u \in \bot\!\!\!\bot$$
 whenever $t * \pi^{\alpha u} \in \bot\!\!\!\bot$

which may be taken as $\lambda^* x. \chi(\lambda^* y. \chi' x(\alpha y))$. Now application in the new aks is defined as

$$(t,p)(s,q) \equiv (\underline{\alpha}(ts),pq)$$

for which it holds that

Forcing in Classical Realizability (6a)

$$(t,p)(s,q)*(\pi,r) \in \coprod \qquad \text{iff}$$

$$\forall u \in \mathsf{C}((pq)r) \, \underline{\alpha}(ts) * \pi^u \in \coprod \qquad \text{if}$$

$$\forall u \in \mathsf{C}((pq)r) \, ts * \pi^{\alpha u} \in \coprod \qquad \text{if}$$

$$\forall u \in \mathsf{C}((pq)r) \, t * s.\pi^{\alpha u} \in \coprod \qquad \text{if}$$

$$\forall u \in \mathsf{C}((pq)r) \, t * s.\pi^u \in \coprod \qquad \text{if}$$

$$\forall u \in \mathsf{C}((pqr)) \, t * s.\pi^u \in \coprod \qquad \text{iff}$$

$$(t,p) * (s,q).(\pi,r) \in \coprod \coprod$$

as required by condition (S1).

Generic Set and Ideal (1)

In forcing one usually considers the **generic set** \mathcal{G} which is the predicate on P with $\mathcal{G}(p) = \{p\}^{\perp \perp}$.

Equivalently one my consider its complement, the **generic ideal** \mathcal{J} with $|\mathcal{J}(p)| = \{p\}^{\perp}$, i.e.

$$\mathcal{J}(p) = \{ q \in P \mid p \neq q \}$$

since $q \in |\mathcal{J}(p)|$ iff $\forall r (C(qr) \to p \neq r)$ iff $\neg C(qp)$.

Generic Set and Ideal (2)

Obviously, we have

$$p \simeq q$$
 iff $\forall r (|\mathcal{J}(p)|(r) \leftrightarrow |\mathcal{J}(q)|(r))$

and also

$$p \leq q$$
 iff $\forall r (|\mathcal{J}(q)|(r) \rightarrow |\mathcal{J}(p)|(r))$

since its right hand side is equivalent to $\forall r (C(rp) \rightarrow C(rq))$.

Equivalently, we may define

$$||\mathcal{J}(p)|| = \Pi \times \{p\}$$

since $(t,q) \in |\mathcal{J}(p)|$ iff $\forall \pi (t,q) * (\pi,p) \in \bot \bot$ iff $\forall u \in C(qp) \forall \pi t * \pi^u \in \bot \bot$.

$\mathcal{P}(P)$ as a cBa

For $X \in \mathcal{P}(P)$ define $\mathcal{J}(X)$ such that

$$|\mathcal{J}(X)|(q)$$
 iff $\forall p \in X \neg \mathsf{C}(qp)$

i.e. $|\mathcal{J}|(X) = X^{\perp}$. We may extend \leq to $\mathcal{P}(P)$ as follows

$$X \leq Y \equiv \forall r \left(|\mathcal{J}(Y)|(r) \to |\mathcal{J}(X)|(r) \right)$$

Thus $X \preceq Y$ iff $Y^{\perp} \subseteq X^{\perp}$ iff $X^{\perp \perp} \subseteq Y^{\perp \perp}$.

This endows $\mathcal{P}(P)$ with the structure of a complete boolean preorder denoted by B. Writing \mathcal{E} for the classical realizability topos arising from the original AKS the classical topos arising from the new AKS is (equivalent to) the topos $\mathsf{Sh}_{\mathcal{E}}(B)$.

Warning B is not an assembly in \mathcal{E} as it is uniform. Thus the construction of $Sh_{\mathcal{E}}(B)$ from \mathcal{E} is **not** induced by an opea morphism.