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Identity Types (1)
are the most intriguing concept of intensional

Martin-Löf type theory (ITT). They are given

by the rules

Γ ` A
(Id-F )

Γ, x, y:A ` IdA(x, y)

Γ ` A
(Id-I)

Γ ` rA(x) : IdA(x, x)

Γ, x, y:A, z : IdA(x, y) ` C(x, y, z) Γ, x:A ` d : C(x, x, rA(x))

(Id-E)

Γ, x, y:A, z : IdA(x, y) ` J((x)d)(z) : C(x, y, z)

together with the conversion rule

J((x)d)(rA(t)) = d[t/x]

and motivated by the intention that all con-

cepts appear as inductively defined (families

of) types.

(c.f. the axiomatization of equality in predi-

cate logic by the axiom > `{x} x = x and the

rule > `{x} ϕ(x, x) iff x = y `{x,y} ϕ(x, y))
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Identity Types (2)

Using J one can define operations

cmpA ∈ (Πx, y, z:A) IdA(x, y)→IdA(y, z)→IdA(x, z)

invA ∈ (Πx, y:A) IdA(x, y)→ IdA(y, x)

validating (where we write idx for rA(x))

(a) (Πx, y, z, u:A)

(Πf :IdA(x, y))(Πg:IdA(y, z))(Πh:IdA(z, u))

IdIdA(x,u)(cmp(f, cmp(g, h)), cmp(cmp(f, g), h))

(b) (Πx, y:A)(Πf : IdA(x, y))

Id(cmp(idx, f), f) ∧ Id(cmp(f, idy), f)

(c) (Πx, y:A)(Πf :IdA(x, y))

Id(cmp(f, inv(f)), idx) ∧ Id(cmp(inv(f), f), idy)

rendering type A as an internal groupoid

where the groupoid equations hold only

in the sense of propositional equality, i.e.

for instance (a) means that there is a term

assocA(f, g, h) of type

IdIdA(x,u)(cmp(f, cmp(g, h)), cmp(cmp(f, g), h))

which may be thought of as a 2-cell in the

sense of higher dimensional categories.
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Identity Types (3)
In early 1990ies I observed that one can prove

that

(ΠA:Set)(Πx, y:A)(Π:f, g:IdIdA(x,y)(f, g))

i.e. proof irrelevance for equality proofs (PIE)

using the following natural extension of MLTT

Γ, x:A, z : IdA(x, x) ` C(x, z) Γ, x:A ` d : C(x, rA(x))
(Id-E′)

Γ, x:A, z : IdA(x, x) ` K((x)d)(z) : C(x, z)

together with the conversion rule

K((x)d)(rA(t)) = d[t/x]

Using K one easily shows that

(Πx:A)(Πf :IdA(x, x))IdIdA(x,x)(idx, f) and thus

(Πx:A)(Πf, g:IdA(x, x))IdIdA(x,x)(f, g) from which

it follows using J that

(Πx, y:A)(Πf, g:IdA(x, y))IdIdA(x,y)(f, g).

NB In implementations of MLTT like in ALF

or AGDA etc. their pattern matching facili-

ties allows on to derive K very easily. The

extension preserves good properties like nor-

malization, decidability of type checking etc.
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Groupoid Model of ITT
In 1994 [HS95] M. Hofmann and I constructed

a groupoid model for ITT where K does not

exists and (a)-(c) hold in the sense of propo-

sitional equality. The key idea was to in-

terpret types as groupoids and families of

types as fibrations of groupoids and

IdA(x, y) as A(x, y)

which may contain more than one element if

the groupoid is not posetal. Thus

PIE fails in the groupoid model!

Already in [HS95] it was observed that this

(deviating?) interpretation has the benefit

that

the bureaucracy of identity types

forces one to check all coherence

conditions when reasoning up to iso-

morphism

i.e. when treating ‘isomorphic’ as ‘equal’ (as

categorists like to do) which sometimes is a

source of mistakes when done naively!
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Towards ω-Groupoids

Already in [HS95] it was observed that ω-

groupoids might be more appropriate since in

ITT the types IdA(x, y) are groupoids them-

selves. We also observed that strict ω-groupoids

are not sufficient either because in ITT the

conditions (a), (b) and (c) do not hold in

the sense of judgemental equality but only

in the sense of propositional equality, i.e.

that weak ω-groupoids are more appropri-

ate.

A bit later Category Theory saw the advent

of Higher Dimensional Categories (hdc’s)

and Higher Dimensional Groupoids (hdg’s).

We suspected that they might be relevant

for modelling ITT faithfully (but there was a

“cultural gap”).
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Towards ω-Groupoids (2)

However, models of ITT are strict cate-

gories (i.e. not “weak” themselves). It rather

is the case that types are internal higher

dimensional groupoids and maps are inter-

nal functors of hdg’s.

Moreover these internal hdg’s are more spe-

cific in the following respects.

(1) The internal groupoids associated with

types in ITT are a bit “less weak” than

ω-groupoids since there is a choice of

composition and inversion and they are

not just given by total relations. More-

over, these choices are given internally by

the maps cmp and inv .

Can be possibly overcome for Kan com-

plexes in the category SS of simplicial

sets.

(2) All this structure is stable under sub-

stitution, i.e. stable under pullbacks aka

Beck-Chevalley condition (BC).
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Categ. Models of TT (1)

(1) Contexts and substitutions are modeled

by a category C.

(2) Families of types are modeled by a dis-

crete fibration P : T → C together with

a cartesian functor C : P → PC (where

PC = ∂1 : C2 → C is the fundamental fi-

bration for C) called comprehension.

For f : ∆ → Γ in C and A ∈ P (Γ) we

thus obtain (by applying C) a canonical

pullback

∆.f∗A
q(f,A)

- Γ.A

∆

p(f∗A)

?

f
- Γ

p(A)

?

writing p(A) : Γ.A→ Γ for C(A).

NB Since C : P → PC is a (cartesian) functor

the choice of canonical pullbacks is func-

torial.
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Categ. Models of TT (2)
If A ∈ P (Γ) we write A∗A for p(A)∗A and

Γ.A.A as abbreviation for Γ.A.A∗A. Further

we write δA for the canonical map from Γ.A

to Γ.A.A.

An identity type for A is given by

(1) IdA ∈ P (Γ.A.A)

(2) a map rA with

Γ.A
rA

- IdA

Γ.A.A

p(IdA)

?

δ
A

-

(3) for C ∈ P (IdA) and d : Γ → Γ.A∗A.IdA.C
with p(C) ◦ d = rA a section J(d) of p(C)

with J(d) ◦ rA = f .

These choices are stable under substitution

(BC), i.e. for f : ∆→ Γ it holds that

f∗IdA = Idf∗A f∗rA = rf∗A f∗J(d) = J(f∗d)
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Modified Assemblies (1)

were defined in my Habil. Thesis (1993) [Str93]

as the ¬¬-separated objects of mr-Set = Set↓Γ
where Γ = Eff (1,−) : Eff → Set.

More concretely, this category can be de-

scribed as so-called modified assemblies.

Objects are triples X = (|X|,
X , PX) where

(|X|,
X) is an assembly and PX ⊆ |X|.
Idea : |X| are the potential objects and PX
are the actual objects. Morphisms from X

to Y are assembly morphisms f : (X,
X) →
(Y,
Y ) preserving actual objects, i.e.

PX ............-PY

|X|
?

∩

f
- |Y |

?

∩

Let ∆(2) be the assembly with underlying set

{0,1} and j 
∆(2) i iff i = j.

We define identity types as follows

IdX(x, y) = (∆(2), {1}) if x = y

IdX(x, y) = (∆(2), ∅) if x = y
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Modified Assemblies (2)
For f, g : X → Y we have

x:X ` f(x) = f(y) : Y holds iff f = g and

x:X ` IdY (f(x), f(y)) holds iff f|PX = gf|PX
Thus propositional equality does not entail

judgemental equality.

This makes it possible to meet the following

criteria of being a “truely non-extensional”

model for ITT + K (see [Str93] for a verifi-

cation)

(C1) x, y:A, z:IdX(x, y) ` x = y : A fails

(C2) x, y:A, z:IdX(x, y) ` B(x) = B(y) fails

(C3) ` p : IdA(t, s) implies ` t = s : A

for arbitrary A : Set and B : A→ Set.

However, one may show that K can be in-

terpreted since it holds in mr-Set that p, q :

IdX(x, y) ` IdIdX(x,y)(p, q).

NB Obviously (C3) is not generally valid in

groupoid or homotopy models!

10



Weak ω-Groupoids (1)

Definitions of hdc’s and hdg’s are fairly com-

plex. Personally, I find A. Joyal’s approach

to weak ω-groupoids and “quasi-categories”

(ω-categories where n-cells for n ≥ 2) the

most understandable one because it takes

place within the category SS = ∆̂ of sim-

plicial sets.

Let ∆ be the category of finite nonempty

ordinals and order preserving maps between

them.

We write ∆[n] or simply [n] for {0,1, . . . , n}.
The maps of ∆ are generated by the mor-

phisms

din : [n−1]→ [n] sin : [n]→ [n−1]

where the first one is monic and omits i and

the second one is epic and “repeats” i.

For 0 ≤ i ≤ n let ∂i[n] be the subobject of

[n] consisting all maps u : [m] → [n] with

i 6∈ im[u]. We write ∂[n] for the subobject⋃n
i=0 ∂i[n] of [n]. ∂[n] is called the boundary

of [n] (or (n−1)-sphere).

11



Weak ω-Groupoids (2)

A k-horn in [n] for 0 ≤ k ≤ n is the subobject

Λk[n] =
⋃
i 6=k ∂i[n] of [n]. Thus Λk[n] is the

union of all (n−1)-faces of [n] containing the

node k. E.g. Λ1[2] can be depicted as

2

0 -

-

1

6

where the omitted faces are indicated by bro-

ken lines.

Λk[n] is an inner horn iff 0 < k < n. Λ1[2] is

an inner horn as opposed to the horns Λ0[2]

and Λ2[2] depicted as

2 2

0 -

-

1

6

0 -

-

1

6
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Weak ω-Groupoids (3)

Let X be a simplicial set. An n-diagram in X

is a morphism h : ∂[n]→ X which commutes

iff there is a h̄ : [n]→ X making

X

∂[n]⊂ -

h

-

[n]

h̄

6

commute.

A quasi-category is a simplicial set such that

every inner horn h : Λk[n] → X in X can be

extended to a h̄ : [n]→ X making

X

Λk[n]⊂ -

h

-

[n]

h̄

6

commute.

A simplicial set X is a quasi-groupoid (aka

Kan complex) iff the above extension prop-

erty holds for all horns (and not just the inner

ones).
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Weak ω-Groupoids (4)

Let X be a quasi-category. 1-cells in X are

f ∈ X(1) whose source and target are given

by x = X(d1
1)(f) and y = X(d0

1)(f), resp., for

which we write f : x→ y.

For x ∈ X(0) we write idx for X(s0
1)(x).

If f : x → y and g : y → z then extension

along Λ1[2] ↪→ [2] gives rise to a 2-cell α

x

y

f

?

g
- z

h

-

giving rise to a (non-unique) composition.

If there exists such a 2-cell we write h ∼
g · f . Factoring 0- and 1-cells of X modulo

the congruence generated by ∼ we get the

fundamental category cat(X) associated

with X.

14



Weak ω-Groupoids (5)
If X is a quasi-groupoid by extendability along

the inclusions of Λ0[2] and Λ2[2] into [2] we

get for every f : x → y a g : y → x with

idx ∼ g · f and a g′ : y → x with idy ∼ f · g′.
A. Joyal has shown that a quasi-category X

is a Kan complex iff cat(X) is a groupoid in

which case cat(X) is called the fundamental

groupoid of X also denoted by π1(X).

Idea Thus it seems natural to interpret in-

tensional type theory ITT in SS where types

are given by quasi-groupoids.

A notion of families of types is given by the

so-called Kan fibrations as arising in the clas-

sical homotopy (or Quillen) structure on sim-

plicial sets which we recall next.

Warning Even if this goes through there is

the problem that type constructions of ordi-

nary ITT will not lead out of discrete simpli-

cial sets (constant presheaves over ∆). Thus,

equality on “ordinary” types of ITT will still

be extensional! This defect was already ob-

served for the ordinary groupoid model of

Hofmann and Streicher.
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Quillen structure on SS (1)

Quasi-groupoids or Kan complexes play an

important role in simplicial homotopy theory.

A Kan fibration is a map p : X → Y in ∆̂

such that for every commuting square

Λk[n]
f

-X

[n]

i

?

∩

g
-Y

p

?

there exists some (not necessarily unique)

h : [n]→ X making the diagram

Λk[n]
f

-X

[n]

i

?

∩

g
-

h

-

Y

p

?

commute. (Notation i ⊥ p)

Obviously X is a Kan complex iff the terminal

projection X → 1 is a Kan fibration.
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Quillen structure on SS (2)
The canonical Quillen structure on SS is

given by (C,W,F) where

C = class of monomorphisms

W = class of weak equivalences

F = class of Kan fibrations

where w : X → Y is called a weak equivalence

iff SS(w,Z) is onto for all Kan complexes.

We don’t give here the axioms for Quillen

structures but recall just the following prop-

erties.

(1a) i ⊥ p for all i ∈ C ∩W and p ∈ F

(1b) i ⊥ p for all i ∈ C and p ∈ F ∩W

(2a) every morphism f in SS factors as f = p·i
for some i ∈ C ∩W and p ∈ F

(2a) every morphism f in SS factors as f = p·i
for some i ∈ C and p ∈ F ∩W
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Quillen structure on SS (3)

By (2a) for every Kan complex X the map

δX : X → X ×X factors as X
rX→ IdX

p→ X ×X
with rX a monic weak equivalence and pX a

Kan fibration.

By (1a) it follows that for every Kan fibration

pC : C → IdX and f : X → C with pC · f = rX
there exists a map J(f) : X → C making

X
f

-C

IdX

rX

?

====

J(
f)

-

IdX

pC

?

commute since rX ⊥ pC.

M. Warren observed that a factorization of

δX as required by (2) can be obtained as

X
X!I

-XI

where I = ∆[1]

XI

X[d1
1,d

0
1]

?

δ
X

-
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Internalising J (1)
Given a Kan fibration p : X → Y and a map

i : W → Z in C ∩ W one may consider the

mediating arrow i|p in

XZ

(i, p) -

i|p
-

XW

X i

-

(†)

Y Z
?

Y i
-

p Z

-

YW

pW

?

and observe that i ⊥ p is equivalent to SS(1, i|p)

being surjective.

However, it can be shown (JT book) that i|p
is in W ∩F and accordingly a split epi since

0 -XZ

(i, p)
?

∩

===

s

-

(i, p)

i|p
?

because all 0 ↪→ i|p is monic and thus in C.
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Internalizing J (2)

Now instantiating (†) with i = rX and Kan

fibration p : C → IdX we get

CIdX

(rX , p) -

r
X |p

-

XX

C rX

-

(‡)

IdIdX
X

?

IdrXX

-

p Id
X

-

IdXX

pX

?

and a section s of rX |p.

Now we get

J = pidq
∗
s

where pidq = Λ(1×IdX
π′→ IdX).

Notice that pidq
∗
CIdX is Sect(p), the object

of sections of p.
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Conclusion

• Kan fibrations in simplicial sets are ex-

pected (Warren’s Thesis) to provide a

model for intensional identity types.

• However, the interpretation of syntacti-

cally definable types of ITT stay within

discrete simplicial sets where everything

is extensional, i.e. rX is isomorphic to δX
for discrete X.

• Maybe simplicial sets within mr-Set lead

out of this dilemma ?

(But I don’t see how to avoid PIE holding

for syntactically definable types!)
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Serre and Hurewicz fibr’s

An intermediary condition would be that i|p
is epic. More explicitly this means that for

every representable object [n] and maps f :

[n]×W → X and g : [n]×Z → Y with p·f = g·i
there exists a map h : [n] × Z → X making

the diagram

[n]×W
f

-X

[n]×Z

[n]×i
?

∩

g
-

h

-

Y

p

?

commute. This reminds one of the definition

of a Serre fibration where the representable

objects play [n] the role of n-simplices.

If i|p is split epi then the above property

holds not only for representable objects [n]

but for arbitray simplicial sets U which con-

dition reminds one of a Hurewicz fibration

but, actually, is somewhat stronger since for

Hurewicz fibrations the choice of h need not

be functorial in U .
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