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Abstract

Recently, a model for dependent type theory has been given by Coquand et al. in a variant
of the category of cubical sets. In their interpretation, they give a constructive version
of Kan filling, classically known from simplicial sets, by means of a newly introduced
operation. This cubical model also validates the univalence axiom constructively.
We present this model in terms of classical Kripke-Joyal semantics in a topos.
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Introduction

Proof-Theoretic Aspects of Dependent Type Theory

In dependent type theory the paradigm of propositions-as-types plays a central role.
This principle is implemented in the type theory introduced by Per Martin-Löf and Jean-
Yves Girard in the early 1970s. Propositions-as-types essentially allows for proofs as
objects, which are captured by terms in the language. Hence, a proposition is considered
as the type of its proofs. These types are called propositional types and constitute a
constructive interpretation of logic.
A proof of A =⇒ B is interpreted by a function mapping proofs of A to proofs of
B. Universal quantification corresponds to products of families of propositional types,
whereas existential quantification corresponds to disjoint unions or sums of families of
propositional types.
Due to the constructiveness of the logic of type theory, proof objects carry algorithmic
information so that functional programs can be extracted from the proofs. Let A and
B be sets of inputs and outputs, respectively, and P ∈ (A → B → Set) be a predicate
specifying the relation between inputs and outputs. Assume we are given a proof object
p ∈ (Πx : A)(Σy : B)P (x, y). Then

fprog = (λx : A)pr1(p) ∈ (A→ B)

is the program extracted from P and

fcorr = (λx : A)pr2(p) ∈ (Πx : A)P (x, f(x))

is the correctness proof for fprog. This in fact provides a general method of extracting
programs out of proofs together with proofs of their correctness. But in practice, the
algorithms obtained that way are not very efficient, since they contain a large amount of
logical meta-information relevant for proof correctness, but not for computation. Thus,
it is often desired to rather construct the programs in advance and do the verification
afterwards. In this respect, a specification is a functional program mapping A to B and
satisfying predicate P is given by the type (Σf : A → B)P (f). So an object of type
(Σf : A → B)P (f) is a pair 〈f, p〉 with f : A → B and p an object in P (f) providing a
proof object for the correctness of the functional program f .
The expressiveness of many functional languages is rather restricted, since they lack the
implementation of dependent types, which would be required to include constructive
logic in the programming language.
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Martin-Löf extended type theory in 1970 by adding universes. A universe U is to be
thought of as a big type of small types. It is closed under many type forming operations.
This makes it possible to consider types such as (A : U)→ A→ A or id = λA.λx.x : (A :
U)→ A→ A.
If T (A) is a type under the assumption A : U, we can form the dependent type (A : U)→
T (A). Then M is of this type iff A : U implies M(A) : T (A). This leads to extensions
of type theory whose strength is similiar or even equivalent to that of ZF set theory.
Martin-Löf’s introduction of a type of all types was driven by three motivating points:

(i) Bertrand Russell’s notion of types as “ranges of significance” of propositional func-
tions

(ii) the need to quantify over all propositions

(iii) the propositions-as-types paradigm

But one can show that the original version of Martin-Löf’s theory, where the type of all
types contains itself as a term, is inconsistent. The theory contains a non-normalizing
proof of ⊥. This is known as Girard’s paradox and it implies that the three points
mentioned above cannot be simultaneously satisfied. Martin-Löf decided to take away
the second point, leading to a predicative type theory.

Models of Intensional Type Theory

In 1973 Martin-Löf introduced a new class of types, denoted by IdA(a, b) where A is
a type and a, b are terms of type A, the so-called identity types. These types can be
thought of as the type of proofs that a is equal to b. A distinction has to be made
between definitional equality on one hand, which means the derivation of equality judg-
ments, and propositional equality on the other hand, which is stated by giving a term of
an identity type.
An intuitive interpretation of type theory can be given in locally cartesian closed cat-
egories, i.e. categories C, whose slice categories C/X (the categories of objects over
X ∈ ob(C)) are all cartesian closed, which is to say, they contain finite products and
exponential objects. The latter are used to model dependent function spaces. Mod-
elling type theory on a locally cartesian category gives rise to extensional type theory
(ETT), where any inhabitant of an identity type already induces a definitional equality,
making the distinction between definitional and propositional equality obsolete. But the
extensional theory has the major disadvantage of rendering type-checking undecidable.
Therefore, intensional type theory is preferable.

In 1994 Thomas Streicher and Martin Hofmann introduced the groupoid model for type
theory in which a type is interpreted by a groupoid and the type IdA(a, b) by the set of
isomorphisms a→ b. There may be more than one inhabitant of an identity type in this
model, hence it refutes the so-called principle of uniqueness of identity proofs.
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Homotopy Type Theory

In 2009 Vladimir Voevodsky introduced a framework for type theory, in which the mod-
els are influenced by constructions from homotopy theory. He introduced a hierarchy for
types. A type A is called a proposition if for all terms a, b of type A, the type IdA(a, b)
contains precisely one element, i.e. it is contractible. Furthermore, A is called a set if
IdA(a, b) is always a proposition and a groupoid if IdA(a, b) is a set. In fact, any such
type can be seen as a groupoid, with the terms as objects, the set of morphisms given by
the set IdA(a, b). Composition is the proof that equality is transitive, and the identity
morphism is the proof that equality is reflexive.
The hierarchy can be extended to higher dimensions, leading to n-groupoids for n ≥ 2
and ∞-groupoids.

One can introduce a notion of weak equivalence between types, which uniformly gen-
eralizes the notions of logical equivalence between propositions, bijection between sets,
categorical equivalence between groupoids and so on. A map f : A→ B is defined to be
a weak equivalence if for any term b of type B, the type (Σa : A)IdB(f(a), b) is a propo-
sition and inhabited. The type of weak equivalences from A to B is written Weq(A,B).
Since idA : A → A is a weak equivalence, the type Weq(A,A) is inhabited for any type
A. From this one can conclude the existence of a map

IdU(A,B)→Weq(A,B).

Voevodsky’s Univalence Axiom is equivalent to this map being a weak equivalence. Con-
sidering an immediate consequence from it, one could subsume the Univalence Axiom
under the slogan “isomorphic types are equal”. The Univalence Axiom also implies func-
tion extensionality – which cannot be derived in intensional type theory.
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Overview

In Chapter 1 we introduce the basic notions of dependent type theory followed by a
comparison of extensional and intensional type theory. We mention the peculiarities of
cubical type theory as recently formulated by Coquand et al.

We proceed in Chapter 2 by giving a model of intensional type theory in the topos of
cubical sets whose site is given by finitely generated de Morgan algebras. In contrast to
the presentation [CCHM15] by Coquand et al. of the model in type theoretical style, we
propound the model in Kripke-Joyal semantics, which is the common framework when
modelling logic in a topos. We also state notions of weak equivalences and contractability.
The universe will be made out of fibrant types, i.e. types endowed with a composition
structure. Such a structure can be considered a kind of totalization function for paths.
Given a partial path in a type, i.e. a path of subterminal objects, if it is connected at 0,
it is connected at 1.
Composition structures also allow for defining a variation of the Kan operation for sim-
plicial sets: given an open box, we can add the missing lid. There also exists a derived
operation which does the filling.

Also, a glueing structure is introduced. Given a weak equivalence from a partial type
to a total type, the glueing operation yields a total type, extending the former partial
type.

This glueing construction plays a central role when defining a composition structure
on the universe, which will be done in Chapter 3. Assuming a Grothendieck universe
on the meta-level, we can lift it to a type-theoretic universe á la Hofmann-Streicher
[HS98, Str14c], and also endow it with a composition structure.

Finally, in Chapter 4 we show that Vladimir Voevodsky’s Univalence Axiom is valid in
this model.

Acknowledgment. I thank Stefanie Szabo and Carsten Dietzel for their careful proof-
reading.
Above all, I am very indebted to my advisor Thomas Streicher for all of his support.
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1 Dependent Type Theory

1.1 Basic Notions of Dependent Type Theory

Type Theory has originally been inspired by Brouwer’s intuitionistic philosophy and
Russell’s Type Theory. It can be considered a logical framework providing explicit proof
objects for which there are rules of computation.
The basic entities of type theory are types A and terms a of a given type. A context Γ
is a list of declarations of variables.
The following kinds of judgments can be made:

` Γ Γ is a context

` Γ = ∆ Γ and ∆ are equal contexts

Γ ` A A is a type in context Γ

Γ ` A = B A and B are (definitionally) equal types in context Γ

Γ ` a : A a is a term of type A in context Γ

Γ ` a = b : A a and b are (definitionally) equal terms of type A in context Γ

In particular, we have dependent types which can be thought of as families of types
indexed by other types, indicated by a statement of the form

x : A ` B(x).

A statement of the form
x = y

gets identified with the type of proofs of this proposition, the so-called identity type

IdA(x, y),

where x and y are terms of type A.
The identity type IdA(x, y) depends on x, y : A. As another example, the type of n-tuples
of a type A can be defined by:

A0 := 1

n : N ` An+1 := A×An

Here, N denotes the type of natural numbers.
The truth of the arithmetical theorem

0 + n = n

9
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is witnessed by a proof term
e : IdN (add(0, n), n).

Besides data types, like e.g. N , N → N or Bool, also propositions are considered as
types of their proof objects.
This paradigm is known as propositions-as-types or Curry-Howard correspondence. Here,
∀-quantifiers are interpreted by “dependent function spaces”, so-called Π-types, whilst
∃-quantifiers are interpreted by “dependent products”, so-called Σ-types.

Proposition Type

⊥ 0

> 1

A ∨B A+B

A ∧B A×B
A =⇒ B A→ B

(∃x : A)B (Σx : A)B(x)

(∀x : A)B (Πx : A)B(x)

In a first attempt, one can interpret these types in a locally cartesian closed category,
where A × B gets interpreted as the product and A → B the exponential BA. This
provides a model of so-called extensional type theory (ETT).

1.2 Intensional vs. Extensional Type Theory

One has to pay attention when it comes to the derivation of judgments. Having defined
addition add : N ×N → N on the natural numbers N by

add(0, n) = n

add(n, succ(m)) = succ(add(n,m))

does not in general lead to the derivation of definitional equality

n : N ` add(0, n) = n,

but only to propositional equality, which means giving a proof term

n : N ` e : IdN (add(0, n), n).

In extensional type theory, there is no distinction between these two forms of equality,
but unfortunately this leads to the drawback of rendering type-checking undecidable.
In contrast, in intensional type theory (ITT), only the latter mentioned statement is
derivable.
To prove this, let us assume the reflection rule for identity types

Γ ` rA(s):IdA(s, t)
(Id-R)

Γ ` s = t : A

10
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to hold and simultaneously type-checking to be decidable. Then it would be decidable
whether ` s = t : A is derivable. Now, for A = (N → N) and x = λ : N.0, it would
be decidable whether ` Πn : N.IdN (t(n), 0) was provable for closed terms t of type
N → N . But this is a contradiction, since there is no recursively enumerable extension
T of primitive recursive arithmetic such that the set of Π0

1-sentences provable in T is
decidable.
Hence, in spite of the intuitiveness of the interpretation of ETT in locally cartesian
categories, it is better to stick to ITT in many cases.
Identity types are the most distinctive feature in ITT. They are given by the rules

Γ ` A
(Id-F)

Γ, x, y : A ` IdA(x, y)

Γ ` A
(Id-I)

Γ, x : A ` rA(x) : IdA(x, x)

Γ, x, y:A, z:IdA(x, y) ` C(x, y, z) Γ, x:A ` d : C(x, x, rA(x))
(Id-E)

Γ, x, y:A, z:IdA(x, y) ` J((x)d)(z) ∈ C[x, y, z]

together with the conversion rule

J((x)d)(rA(t)) = d[t/x].

In his habilitation thesis [Str93], Thomas Streicher has worked out the following criteria
for intensionality and has given several models validating them:

(i) A : Set, , x, y : A, z : IdA(x, y) 6` x = y : A

(ii) A : Set, B : A→ Set, x, y : A, z : IdA(x, y) 6` B(x) = B(y) : Set

(iii) ` p : IdA(t, s) =⇒ ` t = s : A

These models refuted many of those propositions which trivially hold in extensional type
theory, such as function extensionality

(Πx : A)IdB(f(x), g(x)) −→ IdA→B(f, g)

for A,B : Set and f, g : A→ B.
These criteria allow for an additional eliminator K for identity types, given by

Γ, x:A, z:IdA(x, x) ` C(x, z) Γ, x:A ` d : C(x, rA(x))
(Id-E’)

Γ, x:A, z:IdA(x, x) ` K((x)d)(z) ∈ C(x, z)

together with the conversion rule

K((x)d)(rA(t)) = d[t/x].

11
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The eliminator K allows one to prove the principle uniqueness of identity proofs (UIP)

A : Set, x, y : A, u, v : IdA(x, y) ` IdIdA(x,y)(u, v).

To deal with this issue, Thomas Streicher and Martin Hofmann constructed the groupoid
model [HS98], where they considered a universe U of small discrete groupoids, such that
A,B : U are propositionally equal if and only if they are isomorphic.
During the past years, Vladimir Voevodsky has developed a system called Homotopy
Type Theory (HoTT), cf. [Voe09, KLV12, Uni13], which crucially relies on the observa-
tions by Streicher and Hofmann.

1.3 Cubical Type Theory

In their recent work [CCHM15], Thierry Coquand et al. provide a model for a type
theory extending Martin-Löf type theory by new operations, which allow for a notion
of connectedness of types and Kan composition operations. This cubical type theory is
itself modelled on the category of cubical sets. A cubical set is a presheaf on a site of
algebraically defined cubes. In our case, the newly introduced operations crucially rely
on the cubes having connections, which correspond to minimum and maximum functions
on the cubes’ coordinates.
This kind of cubical type theory in particular provides a constructive proof of the univa-
lence axiom, which roughly states that isomorphic types are equal, corresponding to the
common practice in mathematics of identifying isomorphic types. In particular, from
the univalence axiom, one can derive function extensionality.

12
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2 Interpreting Type Theory in Cubical
Sets

2.1 The Category of Cubical Sets

Definition 2.1.1 (de Morgan Algebra). A de Morgan algebra (A,∧,∨, 0, 1,¬) is a struc-
ture such that (A,∧,∨, 0, 1) is a bounded distributive lattice and ¬ : A → A is a de
Morgan involution, i.e. the following laws hold:

¬(x ∧ y) = ¬x ∨ ¬y and ¬¬x = x

Definition 2.1.2 (Cubical Site). We consider the monad (T, µ, η) given by the free de
Morgan algebra functor

T : Set→ Set, I 7→ T (I) := dM(I).

It turns out that dM(I) is finite in case I is finite. Let C denote the opposite category
of the Kleisli category of this monad, when restricted to Setfin, i.e.

ob(C) = ob(Setfin),

HomC(J, I) = HomSet(I, dM(J)).

Accordingly, the identity morphisms in C are given by the units

ηI : I → dM(I),

and composition of morphisms f ∈ HomC(J, I), g ∈ HomC(K,J) is given by the com-
posite

I
f−→ dM(J)

dM(g)−→ dM(dM(K))
µK−→ dM(K).

The category C is called the category of cubes.
In case i /∈ I, we write I, i := I + {i} for the disjoint union. If i ∈ I, we write
I − i := I \ {i} for the set-theoretic complement.

We remark that C has finite products, since the category of de Morgan algebras has
finite sums. In fact

dM(I)× dM(J) ∼= dM(I + J)

for I, J ∈ ob(C).

13
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Definition 2.1.3 (Face Maps and Strict Maps). A face map is a composition of maps
of the form (ib) ∈ HomC(I − i, I), where

(ib)(x) :=

{
x if x 6= i

b if x = i

for b = 0, 1.
A strict map in C is a map which contains neither 0, nor 1 in its image.

Theorem 2.1.4. Any map f in C can be written as a composition f = gh where g is a
face map and h is a strict map.

Definition 2.1.5 (The Category of Cubical Sets). The presheaf category cSet := Ĉ =
SetC

op
is called the category of cubical sets.

A cubical set is a presheaf Cop → Set.

Definition 2.1.6 (Interval Object). The interval object in cSet is given by

I = HomC(−, {∅}) = HomC(−, 1).

There are morphisms

1
0
//

1 // I

defined by

0I(!I)(∗) = 0 = min(dM(I)) and 1I(!I)(∗) = 1 = max(dM(I)).

For f : J → I, the induced morphism is postcomposition with f , i.e. I(f) = f ◦ −.

We remark that for f : J → I in C, we have

I(I) = HomC(I, 1) = HomSet(1, dM(I)) ∼= dM(I)

and I(f) : I(I) → I(J) is a morphism of de Morgan algebras. In particular, I has
connections

I× I
∧
//

∨ // I

given by the infimum and supremum, resp. Also, there is inversion given by the involu-
tion

I
¬−→ I.

As a category of Set-valued presheaves, E = cSet is a topos, as is well-known. Therefore
it has a subobject classifier Ω, where

Ω(I) := Sub(y
Ĉ

(I)),

which is in bijection with the set of sieves on I for I ∈ ob(C).
Let (· = 1): I→ Ω be the presheaf morphism defined by

(· = 1)I(r) := (r = 1)I := { f : J → I | (I(f)(r))(∗) = 1} ∈ Sv(I).

14



Jonathan Weinberger The Cubical Model of Type Theory

Definition 2.1.7 (Face Lattice). The face lattice F is the image presheaf of this mor-
phism, i.e.:

I

&&

(·=1) // Ω

F := im(· = 1)
88

88

By restriction, F is an internal lattice, as follows:

F× F ∧ //
��

i×i
��

F
��

i
��

Ω× Ω ∧
// Ω

In fact, the face lattice can be represented as the free distributive lattice on i, 1 − i for
all i ∈ I.
There are quotient maps I(I) � F(I). Since for each x ∈ I(I) the element x ∧ (1 − x)
gets mapped to 0 under the respective quotient map, the induced map F(f) in

I(I)
I(f) //

����

I(J)

����
F(I)

F(f)
// F(J)

is well-defined.

2.2 Interpreting Type Theory in Cubical Sets

2.2.1 Contexts and Types

Contexts are interpreted as cubical sets Γ ∈ cSet. We consider the category of elements
EltsCΓ whose objects are pairs (I, ρ), where I ∈ ob(C), ρ ∈ Γ(I). A morphism (I, ρ)→
(J, τ) is given by a morphism f : J → I in C with Γ(f)(ρ) = τ .
Furthermore, one can identify EltsCΓ = yC ↓ Γ by the Yoneda Lemma.
It is well-known, that there exists an equivalence

ÊltsCΓ ' Ĉ ↓ Γ.

Types over Γ are interpreted as presheaves A ∈ Ty(Γ) := ÊltsCΓ. Hence, a type A is
given by a family of sets (A(I, ρ))I∈C,ρ∈Γ(I) with restriction maps

Af : A(I, ρ)→ A(J,Γ(f)(ρ))

for f : J → I in C.

15
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2.2.2 Context Comprehension and Terms

Given a type A ∈ Ty(Γ) we interpret context comprehension pΓ
A : Γ.A → Γ by the

presheaf
(Γ.A)(I) := {〈ρ, u〉 : ρ ∈ Γ(I), u ∈ A(I, ρ)}

with restrictions

(Γ.A)(f) : (Γ.A)(I)→ (Γ.A)(J), 〈ρ, u〉 7→ 〈Γ(f)(ρ), A(f)(u)〉

and the presheaf morphism pA := pΓ
A : Γ.A→ Γ given by first projection

(pA)I : (Γ.A)(I)→ Γ(I), 〈ρ, u〉 7→ ρ.

Terms of type A are interpreted as sections of the morphisms pA : Γ.A → Γ, i.e. maps
a : Γ→ Γ.A such that pA ◦ a = idΓ.
For I ∈ ob(C) and ρ ∈ Γ(I) this means (pA)I(aI(ρ)) = ρ.
Hence, we can write

aI(ρ) = 〈ρ, aρ〉 ∈ (Γ.A)(I).

We denote the set of terms of type A ∈ Ty(Γ) by

Ter(Γ;A) := {a : Γ→ Γ.A | pA ◦ a = idΓ}.

2.2.3 Context Substitution

Given contexts ∆ and Γ, substitution is modelled by morphisms σ : ∆→ Γ.
In cSet, we have a functorial choice of pullbacks

∆.(σ∗A)
q //

��

Γ.A

��
∆ σ

// Γ

so σ induces a functor σ∗ : Ĉ/Γ → Ĉ/∆, assigning to a type A ∈ Ty(Γ) the base change
σ∗A ∈ Ty(∆).
For I ∈ ob(C) and δ ∈ ∆(I) we have

(σ∗A)(I, δ) = A(I, σ(δ)).

A term a ∈ Ter(Γ;A) yields a term σ∗a ∈ Ter(∆;σ∗A) by

(σ∗a)I(δ) := 〈δ, aσ(δ)〉,

where aI(ρ) = 〈ρ, aρ〉 ∈ (Γ.A)(I) for ρ ∈ Γ(I).

16
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2.2.4 Dependent Sums and Products

Definition 2.2.1 (Dependent Sum). Let A ∈ Ty(Γ), B ∈ Ty(Γ.A). The dependent sum
of A and B is the type ΣΓ(A,B) ∈ Ty(Γ) defined by

ΣΓ(A,B)(I, ρ) := {〈u, v〉 : u ∈ A(I, ρ), v ∈ B(I, ρ, v)}.

Definition 2.2.2 (Dependent Product). Let A ∈ Ty(Γ), B ∈ Ty(Γ.A). For the base
change functor (pA)∗ : Ĉ/Γ → Ĉ/Γ.A, consider the right adjoint ΠpA : Ĉ/Γ.A → Ĉ/Γ,
which exists due to [MM92, Sect. IV,7; Thm. 2].
We define the dependent product of A and B, written ΠΓ(A,B), by

pΠΓ(A,B) := ΠpA(pB) : Γ.ΠΓ(A,B)→ Γ.

2.2.5 Identity and Path Types

Let A ∈ Ty(Γ). The exponential object AI in the slice category Ĉ/Γ is given by

Γ∗I //

!!

A

��
Γ

where:
Γ∗I //

��

I

!I
��

Γ
!Γ
// 1

With this at hand, we can define the identity type as an object of Ĉ/Γ.

Definition 2.2.3 (Identity Type). The identity type of A is the factorisation of the
diagonal map ∆A = 〈idA, idA〉 : A→ A×A as in:

A

rA   

∆A // A×A

AI
〈A0,A1〉

;;

Definition 2.2.4 (Path Type). Let A ∈ Ty(Γ) and u, v : Γ→ A be terms of type A.
For i /∈ I, the map si : (I, i) � I is induced by inclusion. For Γ ∈ cSet, we can consider
the type Γ′(I, ρ) := Γ(I), which we also denote by Γ.
We define the type of paths from u to v in A by

PA(u, v)(I, ρ) := {[w]∼ : w ∈ A((I, i),Γ(si)(ρ)),

s.t.: u(I,Γ(si◦(i0))(ρ))(ρ) = A(i0)(w), v(I,Γ(si◦(i1))(ρ))(ρ) = A(i1)(w)},

17
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where the equivalence relation ∼ is defined by

w′ = A(i/j)(w)

for (i/j) : I, j → I, i arising from the substitution i 7→ j.

For a term a : Γ → A, in fact PA(a, a) = Pa corresponds to the exponential in the slice
category, given by:

Pa = aΓ∗I //

$$

A×Γ A

{{
Γ

2.3 Types with Composition Structure

2.3.1 Composition Structures and Fibrant Types

Definition 2.3.1 (Partial Elements and Partial Paths). Let ϕ : Γ→ F be a morphism.
For a cubical set Γ, we consider the cubical set (Γ, ϕ) := [ϕ] defined by

(Γ, ϕ)(I) := {ρ ∈ Γ(I) : ϕI(ρ) = 1F}.

A partial element of extent [ϕ] of Γ is a monomorphism m : [ϕ] � 1, i.e. we have the
following diagram

[ϕ] //
m //

��
ιϕ

��

1

[·]
��

Γ ϕ
// F

where [·] : 1→ F picks the largest element in every fiber F(I).
Let A be a type over Γ. A partial path of extent [ϕ] in A is a map u : [ϕ]→ A such that

[ϕ]
u //

��

��

A

��
Γ

commutes.

A morphism ϕ : Γ → F can be seen as a predicate on Γ. The join of partial elements
then corresponds to disjunction.

18
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Definition 2.3.2 (Join of Partial Elements and Partial Paths). Given ιi : [ϕi] → A,
i = 1, 2, we can form the pushout (cf. [MM92, p. 186; Proof 3]):

[ϕ1 ∧ ϕ2] // //
��

��

[ϕ2]
t2

��

��

��
[ϕ1]

t1

CC
// [ϕ1 ∨ ϕ2] // //

��
t1tt2

��

A

zz
Γ

Then [ϕ1 ∨ϕ2] is called the join of the partial elements ϕ1 and ϕ2 (cf. [OP16, Def. 4.2],
and t1 t t2 the join of the partial paths t1 and t2, resp.

Definition 2.3.3 (Composition Structures and Fibrant Types). Let A ∈ Ty(Γ). A
composition structure on A is a family of maps, given for all (I, i), with I ∈ ob(C), i /∈ I,
ρ ∈ Γ(I, i), ϕ ∈ F(I) and u ∈ Ter((Γ, ϕ);Aιϕ), by

compΓ(A, (I, i), ρ, ϕ, u,−) : A((I, 0), ρ)|ext(u) → A((I, 1), ρ), a0 7→ a1,

where ext(u) is the subset of elements a0 ∈ A((I, 0), ρ) extending the partial element u:

yC(I)
a0 // A((I, 0), ρ)

(yC(I), ϕ)

ιϕ

ee

u

77

We require the operation to be uniform in the following sense: For any morphism
f : (I, i)→ (J, j), j /∈ J , f(i) = j, it holds that

compΓ

(
(I, i), ρ, ϕ, u, a0

)
= Af

(
compΓ

(
(J, j), ρ ◦ yC(f), ϕ ◦ yC(f)|(yC(J,j),ϕ), a0 ◦ yC(f)

))
.

A fibrant type is a type together with a composition structure (A, compΓ). We write
FTy(Γ) for all fibrant types over Γ.

We lift this operation to ÊltsCΓ ' Ĉ/Γ. Correspondingly, a composition structure on
A ∈ Ĉ/Γ is a family of maps, assigning to each ϕ : Γ→ F, partial path u : [ϕ]→ A, and
term a0 : Γ→ A as in

A

��
Γ

a0

77

//
〈idΓ,0〉

// Γ× I [ϕ]

u

gg

oo

an element
compΓ(A,ϕ, u, a0) =: a1

19
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as in:
A

��
Γ

a1

77

//
〈idΓ,1〉

// Γ× I [ϕ]

u

gg

oo

The operation is uniform in the following sense: For any substitution σ : ∆→ Γ it holds
that:

ασ ◦ comp∆(σ∗A,ϕ ◦ σ, (ασ)∗u, a0 ◦ σ)︸ ︷︷ ︸
=:σ∗compΓ(A,ϕ,u,a0)

= compΓ(A,ϕ, u, a0) ◦ σ.

2.3.2 Operations derived from Composition

Kan Filling

The composition operation allows for defining a filling operation which provides a notion
of the classically well-known Kan complexes for cubical sets. Note that this yields the
Kan fillings as additional structure, rather than a mere property.

Definition 2.3.4 (Kan Filling Operation). Let A ∈ Ty(Γ× I). For a partial path u of
extent ϕ, a0 : Γ → A, we define a variant of the classically known Kan filling, which is
uniform (cf. [OP16, GS15, CCHM15]):

fillΓ(A,ϕ, u, a0) := compΓ×I(A
∧, ϕ′, (αη)

∗u, a′0),

where
A∧ //

��

A

��
Γ× I× I η

// Γ× I

with η := Γ×∧ : Γ×I×I→ Γ×I, ϕ′ := ϕ◦pr1 : Γ×I→ F and a′0 := a0◦pr1 : Γ×I→ A.

Thus, given a partial element as in

[ϕ]
u //

""

""

A

}}
Γ× I

and setting
v := fillΓ(A,ϕ, u, a0)

yields an element v : Γ× I→ A∧ such that the following diagrams commute:

Γ× I v // A∧

αη

��
Γ ∼= Γ× 1

OO

OO

a0

// A

20
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Γ× I v // A∧

αη

��
Γ ∼= Γ× 1

OO

OO

compΓ(A,ϕ,u,a0)
// A

Γ // // Γ× I v // A∧

αη

��
[ϕ]

OO

OO

u
// A

Transport Operation

Definition 2.3.5 (Transport Operation). In the case ϕ = 0F, we have that [ϕ] = ∅
is the initial cubical set. For A ∈ Ty(Γ × I) and a : Γ → A, we define the transport
operation

transp(A, a) := compΓ×I(A, 0F, 0, a).

Preservation Operation

Filling allows for an operation witnessing that composition of paths is preserved by maps.
Let A, T ∈ Ty(Γ× I). Assume, we are given a map f : I→ AT (which can be viewed as
the transpose of a homotopy f̂ : T × I→ A) and a partial path t : [ϕ]→ T as in:

T

��
Γ

t0

==

//
〈idΓ,0〉

// Γ× I [ϕ]oooo

t

bb

Now, for the composite

[ϕ]
t //

rϕ

77T // Γ× I
pr2 // I

we set

c1 := compΓ(A,ϕ, f̂ ◦ 〈t, rϕ〉, f(0) ◦ t0), c′2 := compΓ(T, ϕ, t, t0) and c2 := f(1)(c′2).

Thus, defining a0 := f(0) ◦ t0, from

T
f(0) // A

��

T × If̂oo

Γ

t0

OO

a0

==

//
〈idΓ,0〉

// Γ× I [ϕ]oooo

〈t,rϕ〉

OOdd
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we obtain a totalization

A

��

T × If̂oo

Γ

c1

==

//
〈idΓ,1〉

// Γ× I [ϕ]oooo

〈t,rϕ〉

OOdd

and analogously the situation

T

��
Γ

t0

==

//
〈idΓ,0〉

// Γ× I [ϕ]oooo

t

bb

yields:
A

T

f(1)

OO

��
Γ

c2

::

c′2

==

//
〈idΓ,1〉

// Γ× I [ϕ]oooo

t

bb

We set v := fillΓ(T, ϕ, t, t0) so as to obtain a diagram

Γ× I
τη◦v // T

��
Γ
OO

OO
t0

;;

//
〈idΓ,0〉

// Γ× I [ϕ]oooo

t

bb

for τη : T∧ = η∗T → T .
We are now able to define the operation pres:

Definition 2.3.6 (Preservation Operation). Let f : I×T → A, a partial element t0 : Γ→
T and a partial path t : [ϕ]→ T . We define the following operation:

pres(f, ϕ, t, t0) := (λj : I)compΓ(A,ϕ ∨ (j = 1), f ◦ 〈v, rϕ〉, a0)

Theorem 2.3.7. The term pres(f, ϕ, t, t0) is of type PA(1)(c1, c2).

Proof. Let p := pres(f, ϕ, t, t0). By definition of the filling operation, we have v(0) = t0,
so

p(0) = compΓ(A,ϕ, f ◦ 〈t0, rϕ〉, a0) = c1.

Furthermore, due to v(1) = c′2 and the uniformity of composition, we obtain

p(1) = compΓ(A,ϕ, f ◦ 〈compΓ(T, ϕ, t, t0), rϕ〉, a0) = f(1)(compΓ(T, ϕ, t, t0)) = c2.

Now, since v(j) = t is of type T (1) over (Γ, ϕ), we have that p(j) is of type A(1).
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2.3.3 Contractible Types and Weak Equivalences

Contractability

To express contractability of a type A, we define:

isContr(A) := (Σx : A)(Πy : A)PA(x, y)

We consider a term p of type isContr(A) and a partial path u : [ϕ] → A. For i = 1, 2,
let pi := pri ◦ p. Then we have a term p1 : Γ → A and a function p2 : A → AI. Setting
q1 := rA ◦ p1 and q2 := p2 ◦ u yields the following situation:

A
rA // AI

��

A
p2oo

Γ

p1

OO

q1

==

//
〈idΓ,0〉

// Γ× I [ϕ]

q2

bb

oooo

u

OO

Now, we define the operation

contr(p, ϕ, u) := compΓ(AI, ϕ, q2, q1),

which yields:

AI

��

A
p2oo

Γ

contr(p,ϕ,u)
==

//
〈idΓ,1〉

// Γ× I [ϕ]

q2

bb

oooo

u

OO

Weak Equivalences

For a map f : T → A to be a weak equivalence is expressed by:

isWeq(T,A, f) := (Πy : A)isContr((Σx : T )PA(y, f(x)))

So the space of weak equivalences is taken to be:

Weq(T,A) := (Σ(f : T → A))isWeq(T,A, f)

Assume we are given a : Γ→ A, a partial element t : [ϕ]→ T , a term p of type PA(a, f(t))
and a weak equivalence, i.e. a term f of type Weq(T,A).
For B := (Σx : T )PA(y, f(x)), we have pr2 ◦ f := f2 ∈ (Πy : A)isContr(B) and f2(a) ∈
isContr((Σx : T )PA(a, f(x))). Writing g1 := pr1(f2(a)) : Γ → B, g2 := pr2(f2(a)) : B →
BI, h1 := rB ◦ g1 and h2 := g2 ◦ 〈t, p〉, we have:

(Σx : T )PA(a, f(x))
rB // ((Σx : T )PA(a, f(x)))I

��

(Σx : T )PA(a, f(x))
g2oo

Γ

g1

OO

h1

44

//
〈idΓ,0〉

// Γ× I [ϕ]

h2

jj

oooo

〈t,p〉

OO
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Hence, we can define the operation

equiv(f, ϕ, t, p, a) := contr((pr2 ◦ f)(a), ϕ, 〈t, p〉),

which gives:

((Σx : T )PA(a, f(x)))I

��

(Σx : T )PA(a, f(x))
g2oo

Γ

equiv(f,ϕ,t,p,a)
77

//
〈idΓ,1〉

// Γ× I [ϕ]

h2

jj

oooo

〈t,p〉

OO

2.3.4 The Glueing Operation

Let Γ be a context and ϕ : Γ→ F. Assume a type A over Γ, a partial type T of extent
ϕ and a weak equivalence w : T → A, i.e.:

T
w //

��

A

��
(Γ, ϕ) // ιϕ

// Γ

We want to define an operation, that turns T into a total type B = GlueΓ(ϕ, T,A,w)
and yields a map unglue : B → A such that B and unglue are extensions of T and f ,
resp.

Definition 2.3.8 (Glueing Operation). For ϕ : Γ → F, T ∈ Ty(Γ, ϕ), A ∈ Ty(Γ) and
a partial element w of Weq(T, ι∗ϕA) ∈ Ty(Γ, ϕ), we define the glueing operation as the
total type GlueΓ(ϕ, T,A,w) ∈ Ty(Γ) where:
For I ∈ ob(C) and ρ ∈ (Γ, ϕ)(I), let

GlueΓ(ϕ, T,A,w)(I, ρ) :=

{
T (I, ρ) if ϕ = 1F

{〈t, a〉 : t ∈ T (I, ρ), a ∈ A(I, ρ), w(I,ρ)(t) = a} else

and for f : J → I, let

GlueΓ(ϕ, T,A,w)f :=

{
Tf if ϕ = 1F

glue(ϕ, t, a)f else

where:

glue(ϕ, t, a)f :=

{
Tf(t) if ϕρ(f) = 1F

{〈Tf(t), Af(a)〉 : t ∈ T (I, ρ), a ∈ A(I, ρ)} else

Hence, glueing can be seen as a witness for the connectedness of the partial element ϕ.
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Furthermore, we consider

unglue(ϕ, T,w) : Γ.GlueΓ(ϕ, T,A,w)→ A

defined by:

unglue(ϕ, T,w)(ρ, glue(ϕ, t, a)) :=

{
w(I,ρ)(t) if ϕI(ρ) = 1F

a else

The glueing operation is depicted in the diagram:

T

��

w

!!

// GlueΓ(ϕ, T,A,w)

��

unglue(ϕ,T,w)

&&
ι∗ϕA

��

// A

��
(Γ, ϕ) // ιϕ

// Γ

In particular, this means
GlueΓ(1F, T, A,w) = T

and
GlueΓ(ϕ, T,A,w)σ = Glue∆(ϕ ◦ σ, Tσ,Aσ, σ∗w)

for a change of base σ : ∆→ Γ.

2.3.5 Composition for Glueing

Assume the situation

T

��

w

!!

// B := GlueΓ(ϕ, T,A,w)

��

unglue:=unglue(ϕ,T,w)

''
ι∗ϕA

��

// A

��
(Γ, ϕ) // ιϕ

// Γ
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with
A

B

��

unglue

OO

Γ

a0

66

b0

==

//
〈idΓ,0〉

// Γ× I [ψ]oo

a

hh

b

bb

where a := unglue ◦ b and a0 := unglue ◦ b0.

Theorem 2.3.9. There is a composition structure on B = GlueΓ(ϕ, T,A,w) ∈ Ty(Γ).

Proof. This is due to [CCHM15, Sec. 6.2]. For i ∈ I, we define ∀i.ϕ : Γ → F as the
disjunction

∀i.ϕ =
∨
ψ≤ϕ

ψ indep. of i

ψ.

Let B := GlueΓ(ϕ, T,A, f). Let ψ : Γ→ F and b be a partial element of B at extent [ψ]
with:

B

��
Γ //
〈idΓ,0〉

//

b0

==

Γ× I [ψ]oo

b

bb

For a = unglue ◦ b and a0 = unglue ◦ b0, let

a′1 : Γ→ A, a′1 := compΓ(A,ψ, a, a0),

and
t′1 : (Γ, δ)→ B, t′1 := compΓ(T, ψ, b, b0).

By means of the equiv-operation, we can then construct a path α in PA(a′1, f(t′1)) over
the restricted context (Γ, ϕ(1)).
We now let

a1 := compΓ(A(1), ϕ(1) ∨ ψ, α t a(1), a′1).

and
b1 := glue(ϕ(1), t1, a1).

Then, on the extent [δ], we have B = T as well as

b1 = comp(Γ,δ)(T, ψ, b, b0).
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3 Interpreting Universes in Cubical Sets

3.1 Universes in Toposes

Definition 3.1.1 (Universe in a Topos). Let E be a topos. A universe in E is a class
U of morphisms in E such that:

(i) U is stable under pullbacks along morphisms in E: if a : A→ I in U, and f : J → I
is a morphism in U, then f∗a : B → J is in U

(ii) U contains all monomorphisms of E

(iii) U is closed under dependent sums:1 if f : A → I and g : B → A are in U, then
Σf (g) := f ◦ g ∈ U.

(iv) U is closed under dependent products: if f : A→ I and g : B → A are in U, then∏
f (g) ∈ U.

(v) In U there is a generic morphism, i.e. a morphism el : E → U such that for each
a : A→ I in U, there is a morphism f : I → U such that:

A

a
��

// E

el
��

I
f
// U

This means a ∼= f∗el. In this sense, el : E → U weakly classifies the morphisms in
U, i.e. the base change morphism f is not required to be unique.

A universe U in E is called impredicative if Ω→ 1 is in U.

3.2 A Universe in Cubical Sets

Let U be a universe in the ambient set theory. The following construction is due to
[HS98, Str14b, KLV12].
We consider

Ty0(Γ) := {A ∈ Ty(Γ) : A(I, ρ) ∈ U f.a. I ∈ ob(C), ρ ∈ Γ(I)}

1Recall that there is a chain of adjunctions Σf a f∗ a Πf : E/I → E/A, where f∗ : E/A → E/I denotes
pullback along f .
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and
FTy0(Γ) := {〈A, compΓ〉 : A ∈ Ty0(Γ)}.

Then Ty0 and FTy0 are sub-presheaves of Ty and FTy, resp.
We consider the cubical sets

U(I) := FTy0(yC(I)), U(f) := ΣyC(f) = yC(f) ◦ −

and

Ũ(I) := {〈A, a〉 : A ∈ U(I), a ∈ A(idI)},

Ũ(f)(〈A, a〉) := 〈U(f)(A), A(f
f→ idI)(a)〉.

By pU : Ũ→ U we denote the first projection.
Now U(I) is a subcategory of U (C/I)op

, which in turn is equivalent to the subcategory of
Ĉ/yC(I) of morphisms with U-small fibers and can be considered as family of presheaves
over yC(I).

3.3 Composition for the Universe

We show that the universe just defined carries a composition structure.
For A,B ∈ Ty(Γ), let E ∈ Ty(Γ× I) in PU(A,B) be a path in the universe.
We claim that the type Weq(A,B) contains a canonical inhabitant.

Theorem 3.3.1. For A,B ∈ Ty(Γ) with E(0) = A and E(1) = B. Then there is a term

equiv(E) ∈Weq(A,B).

Proof. In Ty(Γ) we define the morphisms

f : A→ B, f(x) := transp(E, x),

g : B → A, g(y) := transp(E, 1− y),

and

u : I×A→ E, u(i, x) := fill(E(i), 0, x),

v : I×B → E, v(i, y) := fill(E(1− i), 0, y),

the latter of which can be seen as homotopies, satisfying

u(0, x) = x, u(1, x) = f(x),

and
v(0, y) = g(y), v(1, y) = y.

In fact, f is an equivalence. One can show that (Σx : A)PB(y, f(x)) is inhabited. One
goes on showing that any two elements 〈x0, β0〉, 〈x1, β1〉 in this path space are connected
by a path. This is done via composition and fillings (cf. [CCHM15, Sec. 7.1] for further
details) using the homotopies defined above.
This suffices to show that f is an equivalence, hence, there is a term equiv(E) ∈
Weq(A,B).
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Theorem 3.3.2. Given the universe U from Sec. 3.2, it has a composition structure.

Proof. Let E ∈ Ty(Γ× I) with E(0) = A and E(1) = B.
Let E be the pullback along inversion:

E //

��

E

��
Γ× I

idΓ×¬
// Γ× I

We define composition for the universe as

Comp(U, ϕ,E,A) := GlueΓ(ϕ,E(1), A, equiv(E)) = GlueΓ(ϕ,B,A, equiv(E))

by means of Theorem 3.3.1.
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3.4 Interpreting Type Theory in Comprehension
Categories

For categories E and B, suppose we are given a functor P : E→ B.

Definition 3.4.1 (Cartesian Morphisms). A morphism f : Y → X in E with P (f) =
u : J → I is (P -)cartesian if for every v : K → J and g : Z → X with P (g) = u ◦ v there
exists a unique h : Z → Y with f ◦ h = g and P (h) = v:

E

P

��

Z

h   

g

''
Y

f
// X

B K

v
  

P (g)

''
J u

// I

Definition 3.4.2 (Grothendieck Fibration). A functor P : E → B is a (Grothendieck)
fibration or a fibered category if for every u : J → I in B and X ∈ ob(E) with P (X) = I,
there exists an object X ∈ ob(E) and a cartesian morphism f : Y → X in E such that
P (f) = u. Such an f is called a cartesian lifting of X along u.

Definition 3.4.3 (Fibers and Vertical Morphisms). Let P : E → B be a fibration. A
morphism ϕ in E is called vertical if P (ϕ) = idI for some I ∈ ob(B).
The fiber of I is the subcategory P−1(I) := EI ⊂ E having as objects those X ∈ ob(E)
such that P (X) = I and as morphisms the vertical morphisms ϕ in E such that P (ϕ) =
idI .

Definition 3.4.4 (Cloven and Split Fibrations). A Grothendieck fibration P : E → B

together with a choice of cartesian morphisms is called a cloven fibration: for every
u : J → I and X ∈ ob(E) with P (X) = I, we have an object u∗X ∈ E and a cartesian
morphism Cart(X).
A split fibration is a cloven fibration such that the chosen cleavage respects identities
and composition:

(i) For all I ∈ ob(B) we have id∗I(X) = X and Cart(idI) = idX .

(ii) For all u : J → I and v : K → J and X with P (X) = I, we have (u ◦ v)∗X =
u∗(v∗X) and Cart(u ◦ v) = Cart(u) ◦ Cart(v).

Example 3.4.5 (Codomain Fibration). For a category B, let B→ := B ↓ B. If and
only if B has pullbacks, the functor ∂1 := cod: B→ → B mapping an object in B→, i.e.
an arrow in B to its codomain, is a fibration, called fundamental fibration of B. The
∂1-cartesian arrows are the pullbacks in B→.
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Definition 3.4.6 (Comprehension Category). A comprehension category consists of
categories B and E with a fibration P : E → B and a functor χ : E → B→ such that χ
preserves the P -cartesian morphisms and P factors as follows:

E

P ��

χ // B→

cod}}
B

We call a comprehension category full if χ is full and faithful, and split if P is a split
fibration.

In order to interpret type theory in a given comprehension category, the objects Γ ∈
ob(B) interpret the contexts. The fiber P−1(Γ) is taken to be Ty(Γ). For A ∈ P−1(Γ),
the extended context Γ.A is interpreted by dom(χ(A)). Terms of type A are modelled by
sections of χ(A). The chosen cleavage of the fibration P hence corresponds to a choice
of substitution functions for types.
In our case, let B = cSet and EΓ = Ty(Γ) for Γ ∈ B.
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4 Univalence for Cubical Type Theory

4.1 The Univalence Axiom

Suppose we are given f : T → A and defineB := GlueΓ(ϕ, T,A, f). The map unglue : B →
A extends f in the following sense: For a term b ∈ Ter(Γ;A) we have:

(Γ, ϕ)

b
��

b // (Γ, ϕ).B

unglue

��
(Γ, ϕ)

f
// Γ.A

Theorem 4.1.1. The map

unglue : GlueΓ(ϕ, T,A, f)→ A

is an equivalence.

Proof. Suppose we are given a term u : Γ→ A, a morphism ψ : Γ→ F, a partial path b
in B of extent [ψ], i.e.

B

��
Γ× I [ψ]

b

bb

oo

and a term α : (Γ, ψ)→ PA(u, unglue(b)). Since

T

""

f // A

||
(Γ, ϕ)

is a weak equivalence, using the equivalence operation, we get a term t : [ϕ]→ T extend-
ing b, and a term β of path type PA(u, f(t)).
Now, let ã := compΓ(A,ϕ ∨ ψ, β(i) t α(i), u), b̃ := glue(ϕ, t, ã) and α̃ := fillΓ(A,ϕ ∨
ψ, β(i) t α(i), u). Then b̃ is a term of type B extending b̃ and α̃ is a term of type
PA(u, unglue(b̃)).

Theorem 4.1.2. Let A,B ∈ Ty(Γ). There is a map

WeqToPathA,B =: WeqToPath : Weq(A,B)→ PU(A,B).
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Proof. We define the map by

f 7→ Ef = GlueΓ((i = 0) ∨ (i = 1), A tB,B, f t idB).

Theorem 4.1.3. For any A : U, the type

isContr((ΣX : U)Weq(X,A))

is inhabited.

Proof. It suffices to show that any partial element 〈T, f〉 of extent [ϕ] of

C := (ΣX : U)Weq(X,A)

can be connected to the restriction of a total element by a path.
Now, unglue(ϕ, T, f) extends f and is a weak equivalence. Since any two elements
isWeq(X,A,pr1 ◦ f) can be connected by a path, we conclude that any partial element
of C can be connected by a path to the restriction of a total element.

Theorem 4.1.4 (Univalence Axiom). For all A,B ∈ Ty(Γ), the canonical map

PathToWeq =: PathToWeqA,B : PU(A,B)→Weq(A,B)

is a weak equivalence.

Proof. By [Uni13, Thm. 4.7.7], we find that Thm. 4.1.3 is equivalent to the univalence
axiom.
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