Categorical Intuitions Underlying Semantic Normalisation Proofs

Thomas STREICHER Fachbereich 4 Mathematik, TU Darmstadt Schlossgartenstr. 7, D-64289 Darmstadt streicher@mathematik.th-darmstadt.de

There have been several attempts to rationally(?) reconstruct Berger and Schwichtenberg's method of "Normalisation by Evaluation" employing ideas from categorical logic.

The key observation was the well-known fact that for a cartesian closed category \mathcal{C} the Yoneda embedding $Y_{\mathcal{C}} : \mathcal{C} \to \widehat{\mathcal{C}}$ preserves the cartesian closed structure. Specialising to the free cartesian closed category \mathcal{C} generated by one base type ι one gets a natural isomorphism between $Y_{\mathcal{C}}$ and the interpretation functor $\mathcal{I} : \mathcal{C} \to \widehat{\mathcal{C}}$ where the latter is the free ccc-preserving functor with $\mathcal{I}(\iota) = Y_{\mathcal{C}}(\iota)$. Explicitating this natural isomorphism between $Y_{\mathcal{C}}$ and \mathcal{I} gives rise to "functional programs"

quote_{$$\sigma$$} : $\mathcal{I}(\sigma) \to \mathsf{Y}_{\mathcal{C}}(\sigma)$

 $\mathsf{unquote}_{\sigma}: \mathsf{Y}_{\mathcal{C}}(\sigma) \to \mathcal{I}(\sigma)$

defined by *mutual* structural recursion over σ .

Alas, this doesn't help too much as C is a *quotient* of syntax and, instead, one would like to have that $quote_{\sigma}$ (at the empty context) maps \mathcal{I}_{σ} (at the empty context) to (closed) long $\beta\eta$ -normal forms of type σ .

There are two ways out of this dilemma. One, taken by Cubrić, Dybjer and P.J. Scott, is to consider *setoids* instead of sets as the category in which presheaves (over C) take their values and to show directly that the canonical realising map underlying **quote** maps denotations to long $\beta\eta$ -normal forms. It turns out that this map underlying **quote** is similar to the one used by Berger and Schwichtenberg.

Another way as taken by Altenkirch, Hofmann and Streicher is to consider $\hat{\mathcal{V}}$, the category of presheaves over the category \mathcal{V} of variable substitutions, instead of $\hat{\mathcal{C}}$. As \mathcal{V} is a subcategory of \mathcal{C} (full on objects but not on morphisms) there is an obvious restriction functor $\mathsf{R} : \hat{\mathcal{C}} \to \hat{\mathcal{V}}$. We write $\mathsf{Y}_{\mathcal{V}}$ for the composition $\mathsf{R} \circ \mathsf{Y}_{\mathcal{C}}$. Alas, this functor $\mathsf{Y}_{\mathcal{V}}$ doesn't preserve the ccc-structure (since R doesn't). But this can be repaired by interpreting λ -calculus not in $\hat{\mathcal{V}}$ but in the glueing of $\mathsf{Y}_{\mathcal{V}}$, i.e. the comma category $\mathsf{GI}(\mathsf{Y}_{\mathcal{V}}) = \hat{\mathcal{V}} \downarrow \mathsf{Y}_{\mathcal{V}}$, which is known to be cartesian closed and for which the codomain functor $\operatorname{cod} : \operatorname{Gl}(\mathsf{Y}_{\mathcal{V}}) \to \mathcal{C}$ is known to be cccpreserving. This glueing category $\operatorname{Gl}(\mathsf{Y}_{\mathcal{C}})$ can be understood as the category of *logical predicates* on $\widehat{\mathcal{V}}$. Let NE_{σ} and NF_{σ} be the \mathcal{V} -presheaves of neutral terms and normal terms of type σ , respectively. Note that they can be organised into presheaves over \mathcal{V} just because neutral terms and normal terms are stable under variable substitutions. As they aren't stable under arbitrary substitutions this explains why we have to take \mathcal{V} instead of \mathcal{C} . Now one can interpret λ -calculus in the glued category where base type ι is interpreted as $\mathsf{NF}_{\iota} = \mathsf{NE}_{\iota} \hookrightarrow \mathsf{Y}_{\mathcal{V}}(\iota)$. By induction on the structure of type σ one can show that the interpretation $\mathsf{P}_{\sigma} \hookrightarrow \mathcal{Y}_{\mathcal{V}}(\sigma)$ satifies the following **invariant**

$$\mathsf{NE}_\sigma \subseteq \mathsf{P}_\sigma \subseteq \mathsf{NF}_\sigma$$
 .

As the glued category is a model of λ -calculus one gets for every term t of type σ as its interpretation a (global) element in P_{σ} which is a normal form by the invariant above and which is contained in the equivalence class of t modulo conversion because the functor $\mathsf{cod} : \mathsf{Gl}(\mathsf{Y}_{\mathcal{V}}) \to \mathcal{C}$ preserves the ccc-structure.

Thus, a posteriori the predicates P_{σ} on the interpretation of σ in $\widehat{\mathcal{V}}$ appear as a naive implementation of Taits's idea of *computability predicates* albeit in an appropriate *presheaf topos*, namely $\widehat{\mathcal{V}}$.