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Introduction

As observed in [HS] identity types in intensional type theory endow every type
with the structure of a weak higher dimensional groupoid. The simplest and
oldest notion of weak higher dimensional groupoid is given by Kan complexes
within the topos sSet of simplicial sets. This was observed around 2006 inde-
pendently by V. Voevodsky and the author.

The aim of this note is to describe how simplicial sets organize into a model
of Martin-Löf type theory. Moreover, we explain Voevodsky’s Univalence Axiom
which holds in this model and implements the idea that isomorphic types are
equal as suggested in [HS]. A full exposition of the theory will be given in a
longer article by Voevodsky which is still in preparation, but see [VV]. The
current note just gives a first introduction to this circle of ideas.

1 Simplicial Sets and Kan complexes

Due to limitation of space and time we can just give a very brief recap of this
classical material (due to D. Kan and D. Quillen from late 1950s and 1960s).
An excellent modern reference for this is the first chapter of [GJ].

Let ∆ be the category of finite nonempty ordinals and monotone maps
between them. We write sSet for the topos Set∆op

of simplicial sets. We write
[n] for the ordinal n+1 = {0, 1, . . . , n, n+1} and ∆[n] for the corresponding
representable object in sSet. For 0 ≤ k ≤ n we write ink : Λk[n] ↪→ ∆[n] for the
inclusion of the k-th horn Λk[n] into ∆[n] which is obtained by removing the
interior and the face opposite to vertex k (for n = 0 the horn Λ0[0] = ∆[0]).
There is an obvious1 faithful functor | · | from ∆ into the category Sp of spaces

1With [n] one associates the canonical n-dimensional simplex
{
x ∈ [0, 1]n+1 |

∑
xi = 1

}
endowed with the Euclidean topology. With α : [n]→ [m] one associates the continuous map
|α| from the n-dimensional to the m-dimensional simplex defined as |α|(x)j =

∑
α(i)=j

xi.
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and continuous maps. This induces the singular functor S : Sp→ sSet sending
X to Sp(|−|, X) which has a left adjoint R called geometric realization. The
objects in the image ofR are the so-called CW-complexes which can be obtained
by glueing simplices in a way as described by some simplicial set. The objects
in the image of S are up to weak equivalence the so called Kan complexes as
defined in the next paragraph.

On sSet there is a well known Quillen model structure whose class C of
cofibrations consists of all monos, whose class W of weak equivalences consists
of all maps f : X → Y whose geometric realization R(f) : R(X) → R(Y ) is
a homotopy equivalence2 and whose class F of fibrations consists of all Kan
fibrations, i.e. maps a : A → I in sSet with ink ⊥ a for all k ≤ n in N. Here
f ⊥ g means that for every commuting square kf = gh there is a (typically not
unique) diagonal filler, i.e. a map d with df = h and gd = k as in

·
h- ·

·

f
?

k
-
d

-

·

g
?

By definition a simplicial set X is a Kan complex iff X → 1 is a Kan fibration.
The extension property w.r.t. the horn inclusions i2i : Λi[2] ↪→ ∆[2] expresses
that “up to homotopy” morphisms can be composed and every morphism has
a left and a right inverse.

It is shown in [GJ] that S factors through the full subcategory of Kan com-
plexes and every Kan complex X is weakly equivalent to a singular complex via
ηX : X → S(R(X)). Moreover, one can show that a map f : X → Y between
Kan complexes is a weak equivalence iff f is a homotopy equivalence, i.e. there
is a map g : Y → X such that gf ∼ idX and fg ∼ idY .3

In sSet one can develop a fair amount of homotopy theory and as shown
in [GJ] inverting weak equivalences in sSet gives rise to the same homotopy
category as inverting weak equivalences in Sp. Thus, from a homotopy point
of view sSet and Sp are different ways of speaking about the same thing.
However, the “combinatorial” topos sSet is in many respects much nicer then
the “geometric” category Sp. This we will exploit when interpreting intensional
Martin-Löf type theory in sSet.

2 Homotopy Model for Type Theory

For basic information about type theory and its semantics see [Ho, S91, S93].
Type theory is the basis of interactive theorem provers like Coq as described in

2i.e. there exists a continuous map g : R(Y ) → R(X) such that both composita are
homotopy equivalent to the identities idR(X) and idR(Y ), respectively

3For f, g : A→ B we write f ∼ g iff there is a map h : ∆[1]×A→ B with h(0,−) = f and
h(1,−) = g.
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[BC]. Since sSet is a topos and thus locally cartesian closed it provides a model
of extensional type theory since sSet contains also a natural numbers object N .

In order to obtain a non-extensional interpretation of identity types we re-
strict families of types to be Kan fibrations. Accordingly, types are Kan com-
plexes, i.e. weak higher dimensional groupoids. In this respect the simplicial
sets model appears as a natural generalization of the groupoid model of [HS]
which was our main motivation for introducing it.

Evidently, the class F contains all isomorphism and is closed under compo-
sition and pullbacks along arbitrary morphisms in sSet. Using the fact that
trivial cofibrations are stable under pullbacks along Kan fibrations (referred to
as right proper in the literature) one easily establishes that

Theorem 2.1 Kan fibrations are closed under Π, i.e. whenever a : A→ I and
b : B → A are in F then Πa(b) is in F , too.

For interpreting equality on X we factor the diagonal δX : X → X ×X as

X
rX- Id(X)

X ×X

pX
?

δ
X -

with pX ∈ F and rX ∈ C ∩ W which is possible since (C,W,F) is a Quillen
model structure. The Kan fibration pX will serve as interpretation of

x, y : X ` IdX(x, y)

as suggested in [AW].4 For families of types as given by a Kan fibration a :
A → I one factors the fibrewise diagonal δa : A → A ×I A in an analogous
way. However, there is a problem since such factorisations are in general not
stable under pullbacks. To overcome this problem we will introduce universes
à la Martin-Löf.

As described in [VV] a universe in sSet is a Kan fibration pU : Ũ → U . We
write DU for the class of Kan fibrations which can be obtained as pullbacks of
pU along some map in sSet. In [VV] Voevodsky has shown how such a universe
induces a contextual category CC[pU ] which interprets dependent sums if DU
is closed under composition and which interprets dependent products if DU is
closed under Π.

Some time ago M. Hofmann and the author observed how to lift a Grothen-
dieck universe U in Set to a type theoretic universe pU : Ũ → U in a presheaf
topos Ĉ = SetC

op

. The object U is defined as

U(I) = U (C/I)op U(α) = UΣop
α

where for α : J → I the functor Σα : C/J → C/I is postcomposition with α. As
common we write α∗ for U(α). Notice that with A ∈ U(I) one may associate

4Already for ordinary groupoids (see [HS]) the diagonal is hardly ever a fibration.
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via the Grothendieck construction a morphism PA : Elts(A) → YC(I) which

exhibits U (C/I)op as equivalent to the full subcategory of Ĉ/YC(I) on those maps
whose fibres are small in the sense of U . By Yoneda sections of PA correspond
to elements of A(idI). Moreover, for a ∈ A(idI) and α : J → I in C we have

YC(J)
YC(α)- YC(I)

Elts(α∗A)

α∗a
?

- Elts(A)

a
?

YC(J)

Pα∗A
?

YC(α)
- YC(I)

PA
?

with a and α∗a sections of PA and Pα∗A, respectively. One easily checks that
α∗a = A(α

α→ idI)(a). These observations suggest the following definition of

the presheaf Ũ

Ũ(I) = {〈A, a〉 | A ∈ U(I) and a ∈ A(idI)}

for I ∈ C and
Ũ(α)(〈A, a〉) = 〈U(α)(A), A(α

α→ idI)(a)〉

for α : J → I in C. The map pU : Ũ → U sends 〈A, a〉 to A. One easily checks
that pU is generic for maps with fibres small in the sense of U , i.e. these maps
are up to isomorphism precisely those which can be obtained as pullback of pU
along some map in Ĉ.

Now for C = ∆ we adapt this idea in such a way that pU is generic for Kan
fibrations with fibres small in the sense of U . For this purpose we redefine U as

U([n]) = {A ∈ U (∆/[n])op | PA is a Kan fibration}

where PA : Elts(A) → ∆[n] is obtained from A by the Grothendieck construc-
tion. For maps α in ∆ we can define U(α) as above which makes sense since

Kan fibrations are stable under pullbacks. We also define Ũ and pU using the
same formulas as above but understood as restricted to U in its present form.

Theorem 2.2 The simplicial set U is a Kan complex.

This has been shown in [VV] for a different construction of the universe. A
simpler proof of Theorem 2.2 for the above construction of U has been found
recently by A. Joyal (see [KLV]).

Theorem 2.3 The map pU : Ũ → U is universal for Kan fibrations which are
small in the sense of U .
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Proof: For showing that pU is a Kan fibration suppose

Λk[n]
a- Ũ

∆[n]

ink
?

∩

A
- U

pU
?

commutes. Since the pullback of pU along A is the Kan fibration PA : Elts(A)→
∆[n] there exists a diagonal filler a : ∆[n]→ Ũ making

Λk[n]
a- Ũ

∆[n]

ink
?

∩

A
-
a

-

U

pU
?

commute.
For showing that pU is universal suppose that a : A → I is a Kan fibration

small in the sense of U . Then one gets a as pullback of pU along the morphism
A : I → U sending x ∈ I([n]) to a U-valued presheaf over ∆/[n] which via the
Grothendieck construction is isomorphic to x∗a. 2

Thus pU provides us with a universe in sSet which is closed under dependent
sums and products. The constant presheaf N = ∆(N) over ∆ with value N is a
natural numbers object in sSet. Since N is a small Kan complex the universe
U also hosts the natural numbers object N .

For interpreting identity types in this universe we consider the fibrewise
diagonal δŨ : Ũ → Ũ ×U Ũ with πi ◦ δŨ = id for i = 0, 1 where

Ũ ×U Ũ
π1- Ũ

Ũ

π0 ?

pU
- U

pU
?

and a factorisation

Ũ
rŨ- IdŨ

Ũ ×U Ũ

pŨ?
δ
Ũ -

with pŨ ∈ F and rU ∈ C ∩ W. For small types A, i.e. types in U , the inter-
pretation of IdA and rA is obtained by pulling back along the morphism into U
interpreting A.
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For interpreting the eliminator J for Id-types we pull back the whole situa-
tion along the projection p from the generic context

Γ ≡ A : U,C : (Πx, y:A)IdA(x, y)→ U, d : (Πx:A)C(x, x, rA(x))

to the context A : U . Since p is a Kan fibration and pullbacks along Kan
fibrations preserve weak equivalences we have p∗rŨ ∈ C∩W. Let q : C̃ → p∗IdŨ
be the interpretation of the type family Γ, x, y:A, z:IdA(x, y) ` C(x, y, z) and

d : p∗Ũ → C̃ be the interpretation of Γ, x, y:A, z:IdA(x, y) ` d(x) : C(x, y, z).
Obviously, we have q ◦ d = p∗rŨ . Since q is a Kan fibration and p∗rŨ ∈ C ∩W
by the defining properties of Quillen model structures there is a map J making
the diagram

C̃
q- p∗IdŨ

p∗Ũ

d
6

p∗rŨ

- p∗IdŨ

wwww
�

J

commute. This map J serves as interpretation of the eliminator for identity
types associated with types in the universe U .
NB Since we factor δŨ and d relative to the generic context Γ and interpret
occurrences of r and J as pullbacks of this generic situation these interpretations
are stable under substitution, i.e. the Beck-Chevalley condition holds for them.
However, since in general trivial cofibrations are not stable under arbitrary
pullpacks the instantiations of rŨ are not guaranteed to be trivial cofibrations.
This problem, however, can be avoided when choosing rŨ as the canonical map

Ũ → Ũ∆[1] in the fibre over U because such maps are stable under arbitary
pullbacks.

If one starts from the universe U = {∅, {∅}} one obtains a universe pU :

Ũ → U where U([n]) is the set of those subobjects m : P ↪→ ∆[n] which are
Kan fibrations. One easily shows by induction over n that such subobjects are
trivial in the sense that m is an isomorphism whenever P is not initial.5 Thus
pU is obtained by restricting > : 1 � ΩsSet along the mono 2 � ΩsSet. When
interpreting Prop by this pU one obtains a boolean, 2-valued proof-irrelevant
interpretation of Coq.

Finally we want to emphasize that the model sketched in this section im-
plements the idea that types are weak higher dimensional groupoids which are
here realized as Kan complexes. Moreover, it keeps the interpretation of Prop
from the naive model in Set.

5It is an open question, however, whether for any Kan fibration p : E → B its image is a
union of connected components of B.
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3 Voevodsky’s Univalence Axiom

We now give the formulation of Voevodsky’s Univalence Axiom which as shown
in [VV, KLV] holds in the model described in the previous section.

For this purpose we first introduce a few abbreviations

iscontr(X:U) = (Σx:X)(Πy:Y ) IdX(x, y)

hfiber(X,Y :U)(f :X→Y )(y:Y ) = (Σx:X) IdY (f(x), y)

isweq(X,Y :U)(f :X→Y ) = (Πy:Y ) iscontr(hfiber(X,Y, f, y))

Weq(X,Y :U) = (Σf :X→Y ) isweq(X,Y, f)

where iscontr(X) says that X is contractible, hfiber(f)(y) is the homotopy fiber
of f at y and isweq(f) says that f is a weak equivalence.

Using the eliminator J for identity types one constructs canonical maps

eqweq(X,Y :U) : IdU (X,Y )→Weq(X,Y )

which Voevodsky’s Univalence Axiom6 claims to be all weak equivalences. From
a type theoretic point of view this amounts to postulating a new constant

UnivAx : (ΠX,Y :U) isweq(eqweq(X,Y ))

which, alas, doesn’t seem to have any computational meaning.
Notice, moreover, that isweq(X,Y )(f) is equivalent to

isiso(X,Y )(f) ≡ (Σg:Y→X)
(
(Πx:X)IdX(g(fx), x)

)
×
(
(Πy:Y )IdY (f(gy), y)

)
which formally says that f is an isomorphism but due to the interpretation of
identity types in sSet rather claims that f is a homotopy equivalence. This
equivalence is provable in type theory without the Univalence Axiom (see [VV]
for a Coq file containing a machine checked proof). It is in accordance with the
fact that in sSet morphisms to Kan complexes are weak equivalences iff they
are homotopy equivalences. The type theoretic argument may be seen as an
example for a “synthetic” version of a theorem in homotopy theory.

A surprising consequence of the Univalence Axiom is the function extension-
ality principle (

(Πx:X) IdY (fx, gx)
)
→ IdX→Y (f, g)

for f, g : X → Y in U (see [VV] for a Coq file containing a machine checked
proof). Thus, in presence of the Univalence Axiom a map in U is a weak
equivalence iff there is a map in the opposite direction such that both composita
are propositionally equal to the respective identities. This, however, does not
mean that such maps are actually isomorphisms in the external sense since after
all there are plenty of homotopy equivalences which are not isomorphisms.

6The name “univalent” insinuates that the universe U contains up to propositional equality
only one representative for each class of weakly equivalent types.
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4 Conclusion

The model of intensional type theory in sSet realizes the idea from [HS] that
propositional equality of types should coincide with isomorphism. It is not clear
so far what are the benefits of this coincidence for the formalization of category
theory. In particular, it does not render unnecessary coherence conditions for
monoidal or indexed categories.

However, one may use type theory as an internal language for developing
homotopy theory synthetically. The basic idea is that the type of paths from x
to y in X is given a priori by IdX(x, y). For information on synthetic homotopy
theory consult the blog http://homotopytypetheory.org.

From recent work by Gepner and Kock [GK] it follows that all right proper
Cisinski model structures (where cofibrations are the monomorphims) give rise
to models of type theory validating the Univalence Axiom. This shows that
independently from its type theoretic status univalence is quite ubiquitous.
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