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Abstract. We study the convergence of discretization schemes for the adjoint equation arising
in the adjoint-based derivative computation for optimal boundary control problems governed by
entropy solutions of conservation laws with source term. As boundary control we consider piecewise
continuously differentiable controls with possible discontinuities at switching times, where the smooth
parts as well as the switching times serve as controls. The derivative of tracking-type objective
functionals with respect to the smooth controls and the switching times can then be represented by
an adjoint-based formula. The main difficulties arise from the fact that the correct adjoint state is
the reversible solution of a transport equation with discontinuous coefficient and that the boundary
conditions lead in general to discontinuous adjoints. We prove that discrete adjoint schemes of
monotone difference methods in conservation form such as the Engquist-Osher scheme in combination
with the Godunov flux at the boundary converge to the reversible solution of the adjoint equation.
We also allow that the state is computed by another numerical scheme satisfying certain convergence
properties.
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1. Introduction. We consider optimal initial-boundary control problems for
entropy solutions of scalar conservation laws

(1.1)
yt + f(y)x = g on ΩT := ]0, T [×]0,∞[,

y(0, ·) = u0 on Ω :=]0,∞[, y(·, 0+) = uB on ]0, T [ in the sense of [3],

where f ∈ C2
loc(R) with f ′′ ≥ mf ′′ > 0 and sonic point σ, i.e. f ′(σ) = 0, and g is a

source term satisfying for an εg > 0

(1.2) g ∈ C2
b (ΩT ) ∩ L1(0, T ; (L1 ∩BV )(Ω)), g(t, x) = 0 for t < εg or x < εg.

For k ∈ N0, Ω ⊂ Rn, we denote by Ck(Ω) is the set of k-times continuously differen-
tiable functions and by Ckb (Ω) the subspace of Ck with bounded Ck-norm. Ckb (Ω

cl)
is the subspace of Ckb (Ω) where all derivatives admit a continuous extension to Ωcl.

Ckc (Ω) is the space of Ck-functions with compact support. Ck,α(Ω), Ck,αb (Ω) are
the corresponding Hölder spaces. B(Ω) is the space of bounded functions with the
sup-norm. BV (Ω) is the space of functions of bounded variation.

We consider controls u = (u0, uB) ∈ (L1 ∩ BV )(Ω) × (L1 ∩ BV )(0, T ). It is
well known that in general weak solutions of (1.1) develop discontinuities after finite
time and that uniqueness holds only in the class of entropy solutions (see [3]). By
definition y = y(u) ∈ L∞(ΩT ) is an entropy solution of (1.1), if for all convex functions
η ∈ C0,1(R) with corresponding fluxes q(y) =

∫ y
0
η′(s)f ′(s) ds the entropy inequality

η(y)t + q(y)x ≤ η′(y)g in D′(ΩT )
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is satisfied and the initial data are attained in L1, i.e. for arbitrary R > 0 it holds
limτ↘0

1
τ

∫ τ
0
∥y(t, ·) − u0∥1,]0,R[ dt = 0. To obtain well-posedness, it is standard to

impose the boundary condition in (1.1) in the sense, see [3],

sgn(uB − y(·, 0+))(f(y(·, 0+)− f(k)) ≥ 0, ∀k ∈ I(y(·, 0+), uB) a.e. on ]0, T [(1.3)

with I(α, β) := [min{α, β},max{α, β}]. This ensures that the boundary data are only
attained at inflow regions. We consider objective functionals of the form

J(y) :=

∫
Ω

γ(x)ψ(y(T, x), yd(x)) dx(1.4)

with ψ ∈ C1,1(R2), desired state yd ∈ BVloc(R)∩L∞(R) and a weight γ(x) ∈ C1
c (Ω).

As initial and boundary data, we consider piecewise continuously differentiable
functions u0 ∈ PC1(Ω;x1, . . . , xnx

) and uB ∈ PC1([0, T ]; t1, . . . , tnt
) with possible

discontinuities at 0 < x1 < · · · < xnx and at 0 < t1 < · · · < tnt < T , respectively. To
this end, we set as control

w = ((u0j )1≤j≤nx+1, (u
B
j )1≤j≤nt+1, (xj)1≤j≤nx

, (tj)1≤j≤nt
)

∈ C1
b ([0,∞[)nx+1 × C1

b ([0, T ])
nt+1 × Rnx × Rnt =:W

and define with x0 = 0, xnx+1 = ∞, t0 = 0, tnt+1 = T

u0(x;w) =
∑nx+1

j=1
u0j (x)1]xj−1,xj ], uB(t;w) =

∑nt+1

j=1
uBj (x)1]tj−1,tj ].(1.5)

Moreover, we define the jumps

[u0(xj)] = u0j (xj)− u0j+1(xj), [uB(tj)] = uBj (tj)− uBj+1(tj).

In [24, 26] it was shown that at a control w, for which u0(·;w) and uB(·;w) satisfy a
generic non-degeneracy assumption (see (ND) below), the mapping

w ∈W 7→ J(y(u0(·;w), uB(·;w)))

is Fréchet-differentiable. Now let

Wad = {((u0j )1≤j≤nx+1, (u
B
j )1≤j≤nt+1, (xj)1≤j≤nx , (tj)1≤j≤nt) ∈W :

0 < x1 < · · · < xnx , 0 < t1 < · · · < tnt < T, f ′(uBj ) > 0, 1 ≤ j ≤ nt + 1}.

The boundary condition remains unchanged, if we assume f ′(uB) > 0, see [23].
As shown in [24, 26], the gradient of the objective functional (1.4) admits an

adjoint representation. Let δw = (δu0, δuB , δx, δt) ∈ W be an arbitrary variation
of w In this paper, as in [24] the smooth control parts u0j and uBj as well as shock
generating switching locations xj or switching times tj can be controlled, i.e.,

(1.6) δxj = 0 if [u0(xj)] ≤ 0 and δtj = 0 if [uB(tj)] ≥ 0.

In this case, the adjoint representation reads

duJ(y(u)) · δu =

∫
Ω

p(0, x)δu0(dx) +

∫ T

0

p(t+, 0+)f̂ ′(y(t, 0+))δuB(dt)(1.7)

2



with f̂ ′(y(t, 0+)) =
∫ 1

0
f ′((1− λ)y(t+, 0+) + λy(t−, 0+)) dλ. Here, p is the reversible

solution of the adjoint equation (see Definition 2.9)

(1.8)
pt + f ′(y)px = 0 on ΩT ,

p(T, ·) = pT on Ω, p(·, 0+) = pB on {t ∈ ]0, T [ : f ′(y(t, 0+)) < 0}.

with constant boundary data pB ∈ R. The adjoint formula (1.7) requires the data

(1.9) pB = 0, pT (x) =

{
γ(x)ψy(y(T, x), yd(x)) if y(T, ·) continuous at x,
γ(x) [ψ(y(T,x),yd(x))][y(T,x)] if y(T, ·) discontinuous at x.

We note that the adjoint formula (1.7) can also be extended to the case, that rarefac-
tion centers can be controlled (then (1.6) does not apply). In fact, then (1.7) holds
with a particular definition of p(0, xj) and p(tj , 0+) at rarefaction centers obtained
by a weighted average of the adjoint state over the rarefaction wave, see [26]. Due to
space limitations we will assume (1.6) for the convergence analysis of discrete adjoint
schemes and will not treat the shift of rarefaction centers.

Hence, objective functions (1.4) lead to discontinuous end data (1.9), if y(T, ·) has
a shock in the support of γ. The computation of adjoints with discontinuous end data
requires care, since the correct value has to be propagated in the shock funnel. This
requires an increasing numerical smoothing at the shock location or an appropriate
modification of the end data of the adjoint scheme, since otherwise the discrete adjoint
may converge to wrong values in the shock funnels [4, 13, 14, 25].

In this paper, we will restrict the analysis to Lipschitz end data pT ∈ C0,1(Ω).
The developed convergence results can then be applied to objective functionals using
smoothed states, e.g., by convolution, or can be utilized when using the method from
[25], where a suitable approximation of the discontinuous end data pT is proposed.

As discussed in [8] the solution of (1.8) is not unique if the state contains a shock.
Therefore, it requires an appropriate characterization of the ”correct” adjoint state,
which is for the Cauchy problem , i.e., Ω = R, the reversible solution introduced in
[6]. Moreover, [6] develops a characterization of reversible solution by a monotonicity
criterion, which is also well suitable for numerical approximations. For the case of
Cauchy problems this approach was already used in [15, 29]. In this paper, we will first
develop a similar monotonicity criterion for reversibility in the setting of transport
equations with boundary conditions of the type (1.8). This criterion will then be used
to prove convergence of the adjoint scheme.

There are only few publications discussing the discretization of the related optimal
control problems. For the case of initial control problems, [15, 30, 31] considered first
order approximations of transport equation having a coefficient satisfying at least a
weak one-sided Lipschitz condition and sufficiently smooth end data. Moreover, the
authors in [17] propose a second order Roe-type scheme whereas using total variation
diminishing Runge-Kutta (TVD-RK) methods for the time discretization, a second
order adjoint approximation is developed in [16]. For discontinuous end data pT ,
[13, 14] propose a convergent modified Lax-Friedrich-scheme with sufficient viscosity.

The case of boundary control poses several additional challenges. Boundary con-
ditions (1.3) [3, 21] lead to a free boundary problem, since the determination of the
outflow region is part of the problem. While the state attains the boundary data on
the inflow boundary, the adjoint attains its boundary data at the outflow boundary.
After discretization, this requires a careful convergence study of the discrete state
and the discrete adjoint on the first grid cell at the boundary to the correct values
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(boundary data or values of the state / adjoint propagated from the interior). More-
over, also the characterization of reversible solutions of the adjoint equation in a way
suitable for the convergence analysis of adjoint schemes is more involved. We will
show a convergence result, if the Godunov flux is used on the boundary cell.

The paper is organized as follows: In Section 2 we recall some facts on the state
equation and introduce a convenient characterization for the reversible solution of
the adjoint equation. In Section 3 we consider monotone difference schemes and the
corresponding adjoint scheme. For a modified Engquist-Osher scheme that uses the
Godunov flux at the boundary we show the convergence of the discrete adjoint to the
correct reversible solution.

2. Continuous problem. We collect some important properties of entropy so-
lutions and analyze the behavior at the boundary.

Proposition 2.1. Let f ∈ C2(R) with f ′′ ≥ mf ′′ > 0, g ∈ C2
b (ΩT ) and Mu > 0.

Let Uad := {(u0, uB) ∈ (L∞ ∩BV )(Ω)× (L∞ ∩BV )(0, T ) : ∥u0∥∞ + ∥uB∥∞ ≤Mu}.
Then for all u ∈ Uad there exists a unique entropy solution y = y(u) ∈ L∞(ΩT ).
After modification on a set of measure zero, one has y ∈ C([0, T ];L1

loc(Ω)). There are
My, Ly > 0 such that for all u, û ∈ Uad and all t ∈ [0, T ] the following estimates hold

∥y(t, ·;u)∥∞ ≤ My,

∥y(t, ·;u)− y(t, ·; û)∥1,[a,b] ≤ Ly(∥u0 − û0∥1,[a−tMf′ ,b+tMf′ ] + ∥uB − ûB∥1,[0,t]),

where a < b and Mf ′ = max|s|≤max(∥u∥∞,∥û∥∞) |f ′(s)|. Moreover, y ∈ BV (ΩT ).
Finally, for any interval [τ0, τ1] ⊂ [0, T ] such that u′B |[τ0,τ1] ≥ −CB with some

constant CB ≥ 0 there exist constants c, C > 0 such that

yx(t, x) ≤
1

c(t− τ0) + 1/ sup((yx(τ0, ·))+)
+ C, (t, x) ∈]τ0, τ1]× Ω.(2.1)

Moreover, for any ε > 0 there is C = C(ε) > 0 such that (2.1) holds on ]0, T ]× [ε,∞[.

Proof. See, e.g., [3, 21, 24]. BV-regularity and one-sided Lipschitz condition follow
by combining results in [8, 19, 18, 27], see [23]. (2.1) follows also from Lemma 3.5.

Let us first consider the case where the controls only generate shocks, i.e., u0(x−) ≥
u0(x+) for all x ∈ Ω and uB(t−) ≤ uB(t+) for all t ∈ ]0, T [, this assures that the
one-sided Lipschitz condition (OSLC) is satisfied on ΩclT , see [24], meaning that

(f ′(y(t, ·)))x ≤ α(t) for α ∈ L1(0, T ).(2.2)

If the initial control has upward-jumps or the boundary control has downward-jumps
generating rarefaction waves then only a weak OSLC is satisfied and a OSLC (2.2)
holds by (2.1) outside of any neighborhood of the rarefaction centers. In any case,
we have y(t, x+) < y(t, x−) for almost all t and all x ∈ Ω. This allows us to apply
Dafermos’ theory of generalized characteristics [10].

Definition 2.2 (Generalized characteristics). A Lipschitz curve [α, β] ⊂ [0, T ] →
ΩT , t 7→ (t, ξ(t)) is called (generalized) characteristic on [α, β], if

ξ̇(t) ∈ [f ′(y(t, ξ(t)+)), f ′(y(t, ξ(t)−))] a.e. on [α, β].

A characteristic is called genuine on [α, β], if y(t, ξ(t)+) = y(t, ξ(t)−) for a.a t ∈
[α, β]. A characteristic is called minimal/maximal, if for almost every t ∈ [α, β] it
holds ξ̇(t) = f ′(y(t, ξ(t)−)) respectively ξ̇(t) = f ′(y(t, ξ(t)+)). We write ξ = ξ+ if ξ
is maximal and ξ = ξ− if ξ is minimal, respectively. A generalized characteristic is
called extreme, if it is either minimal or maximal.
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It is known that generalized characteristics travel either with classical speed or with
shock speed. Moreover, extreme backward characteristics are genuine. Moreover, if ξ
is genuine, i.e., y(t, ξ(t)−) = y(t, ξ(t)+) for almost all t ∈ ]α, β[, then

ξ(t) = ζ(t), y(t, ξ(t)) = v(t), t ∈ ]α, β[,

where (ζ, v) is a solution of the characteristic equation

ζ̇(t) = f ′(v(t)) and v̇(t) = g(t, ζ(t)).(2.3)

We refer to [10], [22], and [24, Prop. 2.4, 2.5].

Definition 2.3 (Transition points). We call a point θi ∈ ]0, T [ transition point,
if for all sufficiently small δ > 0 the sets {t ∈ ]θi − δ, θi[ : f

′(y(t, 0+)) < 0} and
{t ∈ ]θi, θi+δ[ : f

′(y(t, 0+)) ≥ 0} have positive measure. If the extreme (i.e., maximal)
backward characteristic ξi through (θi, 0) ends at some point (ϑi, 0) with ϑi > 0, we
call ϑi return point. The set of transition points is denoted by T.
Note that the maximal backward characteristic through a transition point exists due
to [22], see also [24, Proposition 2.5].

Lemma 2.4 (Structure at the boundary). Let f ∈ C2(R) be strictly convex and
let y = y(u) be the entropy solution of (1.1) for u = (u0(w), uB(w)) given by (1.5),
w ∈Wad. Assume that ess inf{t : uB(t)̸=y(t,0+)}|f(uB(t))− f(y(t, 0+))| > 0 holds, then
the set T is finite with |T| = nT . Moreover, it holds that 0 < θ1 < θ2 < · · · < θnT−1 <
θnT

< T. In addition, each θ ∈ T is a shock generating point with uB(θ+) > uB(θ−).

Proof. A proof is given in [23, Lemma 3.1.17] and [24, Lemma 2.7].

Definition 2.5. In the setting of Lemma 2.4 we define:
(i) We call a transition point θi ∈ T secondary, if there exists j ∈ {1, . . . , nT }

with j ̸= i such that θi ∈ ]ϑj , θj [. Otherwise, the transition point is called
primary. We write Tp ⊂ T for the set of primary transition points.

(ii) If outflow occurs at T , i.e., limx↘0 f
′(y(T, x)) < 0, we denote by ξT the

extreme backward characteristic through (T, 0), which either ends at some
point (T−, z) with T− = 0, z ∈ Ω or at (T−, 0) with 0 ≤ T− < T . If inflow
occurs T , i.e., limx↘0 f

′(y(T, x)) > 0, we set T− = T . With the maximal
backward characteristic ξi = ξ(·; θi, 0), the outflow domain is defined by

D− :=
⋃

i=1,...,nT+1,
θi∈Tp

{(t, x) ∈ ΩT : t ∈ ]ϑi, θi[, x ∈ ]0, ξi(t)[} ,

where we set θnT+1 := T , ϑnT+1 := T− and ξnT+1 := ξT .
(iii) Denote by ζ(·; θ, s, w), v(·; θ, s, w) the solution of (2.3) for the initial condition

ζ(θ; θ, s, w) = s, v(θ; θ, s, w) = w.

We say the transition point θi ∈ T is non-degenerated, if the extreme back-
ward characteristic ξi arrives in (0, z) or (ϑi, 0) from the interior of a rar-
efaction wave or ends in a point (0, z) or (ϑi, 0) where u0 or uB, respectively,
are continuously differentiable. In the latter case, we require that for some
β > 0 the solution ζ of (2.3) fulfills

d
dsζ(t; 0, s, u0(s))|s=z ≥ β ∀ t ∈ [0, θi],

resp. d
dθ ζ(t; θ, 0, uB(θ))|θ=ϑi ≤ −β ∀ t ∈ [ϑi, θi].
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Conversely, if ζ ends in the interior of a rarefaction wave, it has to hold

d
dw ζ(t; 0, s̄, w)|w=w̄ ≥ β, ∀t ∈ [0, θi], w̄ ∈]u0(s̄−), u0(s̄+)[,

resp. d
dw ζ(t; θ, 0, w)|w=w̄ ≥ β(t− ϑi), ∀t ∈ [ϑi, θi]

with w̄ ∈ ]uB(ϑi+), uB(ϑi−)[.

Remark 2.6. The non-degeneracy condition of transition points according to Def-
inition 2.5(iii) coincides with the one in [24, Definition 4.12] which is:
If θi ∈ T is non-degenerated, we can as in [29, Lemma 3.5.1, Lemma 3.5.6] or [24,
Lemma 4.2, Lemma 4.4] construct a stripe Si ⊂ ΩT around ξi of the form

(2.4) Si = {(t, x) : t ∈]ϑi, θi + ε] : x ∈ [ξ(t; θi − ε, 0), ξ(t; θi + ε, 0)]}

with genuine backward characteristics ξ(·; θi ∓ ε, 0) emanating from (θi ∓ ε, 0) and
ε > 0 small enough (we set ξ(t; θi − ε, 0) = 0 outside of its domain of definition) such
that there exists a local solution Y ∈ C0,1

b (Si) that coincides with the solution y of
(1.1) on Si ∩ ([ϑi, θi[×Ω). If ηi denotes the shock emanating from (θi, 0) then it is
easy to see that also y = Y on Ŝi := {(t, x) ∈ Si : t ≥ ϑi, x ≥ ηi(t)}. With our
regularity of the source term even Y ∈ C1

b (Si) holds.

From a geometrical point of view, the description of non-degeneracy in Remark 2.6 is
more convenient as the one in Definition 2.5, so we will mainly work with it.

Next, we define the non-degeneracy of shocks, see [24, 26, 30, 31].

Definition 2.7. A discontinuity x̄ of y(T, ·) is called non-degenerated, if it is
neither a shock interaction nor a shock generation point and the corresponding mini-
mal/maximal backward characteristic through (T, x̄) ends in some point (0, z) or (t̃, 0),
where u0 or uB is continuously differentiable, respectively, or which lies in the interior
of a rarefaction wave that is created either by a discontinuity of u0 or uB.

Consequently one can construct a stripe S± along the minimal/maximal characteristic
ξ±, such that y is Lipschitz continuous on {(t, x) ∈ S− : x < η(t;T, x̄)} and {(t, x) ∈
S+ : x > η(t;T, x̄)}, where η(·;T, x̄) denotes the shock through (T, x̄), see [30].

We will work under the following non-degeneracy condition from [26].
(ND) A control u = (u0(w), uB(w)) given by (1.5), w ∈ Wad, is called non-

degenerated if the following holds: There is no point x ∈ Ω or t ∈ [0, T ] such
that u0 or uB are continuous, but not differentiable. The associated entropy
solution y(T, ·;u) has no shock generation points and a finite number of dis-
continuities 0 < x̄1 < · · · < x̄K , which are all non-degenerated in the sense of
Definition 2.7. Moreover, ess inf{t : uB(t)̸=y(t,0+)}|f(y(t, 0+)) − f(uB(t))| > 0
is fulfilled and all transition points θi ∈ T are non-degenerated according to
Definition 2.5(iii).

It was shown for the initial value problem in [30, Thm. 3.8], that the requirements
of (ND) for y(T, ·;u) hold for almost all times T under the slight stronger regularity
assumption f ∈ C3, u0 ∈ PC2. Hence (ND) is a generic situation. Moreover, the
following result can be shown.

Theorem 2.8. Let f ∈ C3(R), f ′−1 ∈ C2,β(R) and f ′′ ≥ mf ′′ > 0 for constants
β ∈]0, 1], mf ′′ > 0. Let w̄ ∈ W be such that (u0(·; w̄), uB(·; w̄)) given by (1.5) satisfy
(ND). Then there is a neighborhood Bρ,W (w̄) ⊂W of w̄ such that the mapping

w ∈ Bρ,W (w̄) ⊂W 7→ y(u0(·;w), uB(·;w)))(T, ·) ∈ PC1(Ω; x̄1(w), . . . , x̄K(w))
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is well defined, the shock positions w ∈ Bρ,W (w̄) ⊂ W 7→ x̄k(w), k = 1, . . . ,K, are
continuously differentiable and between the shocks

w ∈ Bρ,W (w̄) ⊂W 7→ y(u0(·;w), uB(·;w)))(T, ·)|]x̄k(w),x̄k+1(w)[

can be extended to a continuously differentiable mapping w ∈ Bρ,W (w̄) ⊂ W 7→
Yi(w) ∈ C([x̄k(w̄)− ε, x̄k+1(w̄) + ε]) for ε > 0 sufficiently small.

Proof. See [26, Thm. 17].

2.1. The adjoint equation. We consider the backward problem for transport
equations of the form (1.8) with end data pT ∈ C0,1

b (Ω) and constant boundary value
pB ∈ R. As already mentioned, the solution is not unique if y contains a shock [8]. A
suitable stable solution to (1.8) is the reversible solution defined as in [24, 26]:

Definition 2.9 (Reversible solution). Let pT be a bounded function that is
the pointwise everywhere limit of a sequence (pTn ) ⊂ C0,1

b (Ω), with (pTn ) bounded in

C(Ω) ∩W 1,1
loc (Ω) and let pB ∈ R. Then the reversible solution associated to (1.8) is

defined by the following requirements:
(i) For all x̄ ∈ Ω and all generalized backward characteristics ξ trough (T, x̄) the

solution of (1.8) is given by the characteristic equation

d

dt
p(t, ξ(t)) = 0 for t ∈ ]0, T [, ξ(t) > 0 and p(T, ξ(T )) = pT (x̄).(2.5)

(ii) p(t, x) = pB for all (t, x) ∈ D−.

Remark 2.10. In [6], the authors verify that the space of reversible solutions on
RT := ]0, T [×R for pT ∈ C0,1(R) is a vector space. It is easy to see that the space of
reversible solutions to (1.8) in the sense of Definition 2.9 is a vector space on ΩT \D−

and since they are constant on D−, then also on ΩT .

Proposition 2.11. Let pT ∈ C0,1
b (Ω) and let (2.2) hold. Then for any t ∈]0, T [

the reversible solution p of (1.8) according to Definition 2.9 satisfies

∥p∥∞,ΩT \D− ≤ ∥pT ∥∞,Ω, ∥px∥∞,([t,T ]×Ω)\D− ≤ e
∫ T
t
α∥pTx ∥∞,Ω.(2.6)

Proof. Set p̃T (x) = pT (max{x, 0}+) and extend the coefficient by ã(t, x) =
f ′(y(t, x)) for x ≥ 0 and ã(t, x) =Mf ′ for x < 0 with Mf ′ := sup|y|≤My

|f ′(y)|. Then
ã satisfies the OSLC ãx(t, ·) ≤ α(t). Let p̃ be the reversible solution of p̃t+ ãp̃x = 0 on
RT with end data p̃T along generalized backward characteristics according to [6, Prop.
4.1.16] analogously to Definition 2.9. Then by [6, Thm. 4.1.5] p̃ satisfies (2.6) and by
[24, Lem. 2.7(ii)] p̃ coincides with p on ΩT \ D−, see also the proof of Proposition
2.12 below.

This characterization is not well suited for the convergence analysis of numer-
ical schemes. Therefore, we develop a more convenient monotonicity criterion for
reversible solutions of (1.8), which extends the one of [6] for transport equations
without boundary conditions.

Proposition 2.12 (Characterization of reversible solution by monotonicity).
Let f ∈ C2(R) be strictly convex, let y = y(u) be the entropy solution of (1.1) for
u = (u0(w), uB(w)) given by (1.5), w ∈ Wad, satisfying (ND) and let y fulfill the
OSLC (2.2). Choose end data pT ∈ C0,1(Ω) with pTx ≥ 0 and boundary data pB ∈ R.
If p = pB on D−, p is a Lipschitz-solution on ΩT \(D−)cl and px ≥ 0 on ΩT \(D−)cl,
then p is the reversible solution of (1.8) in the sense of Definition 2.9.
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Proof. We extend p to a Lipschitz solution on RT and apply [6, Lemma 4.1.8].
First assume that there is only one transition point θ1 ∈ ]0, T [ in the sense of Definition
2.3 and denote by ϑ1 ∈ [0, θ1[ the associated return point. Then the outflow domain
is given by D− = {(t, x) ∈ ]ϑ1, θ1[×Ω: x < ξ(t; θ1, 0)}, where ξ(·; θ1, 0) is the maximal
backward characteristic through (θ1, 0). By the non-degeneracy assumption, there
exists a stripe S around ξ(·; θ1, 0) such that the entropy solution y is a classical solution
of (1.1) on Ŝ = S ∩ (]ϑ1 − κ, θ1[×Ω) for small κ ≥ 0. Set p̃T (x) = pT (max{x, 0}+)
and extend the coefficient by ã(t, x) = f ′(y(t, x)) for x ≥ 0 and ã(t, x) = Mf ′ for
x < 0 with Mf ′ := sup|y|≤My

|f ′(y)|. Define the sets

A+
1 := {(t, x) ∈ RT : Mf ′ min{t− ϑ1, 0} ≤ x ≤ 0},

A−
1 := {(t, x) ∈ RT : Mf ′(t− T ) < x ≤Mf ′ min{t− θ1, 0}},
A0

1 := {(t, x) ∈ RT : Mf ′ min{t− θ1, 0} < x < Mf ′ min{t− ϑ1, 0}}.

Let p̃ be a function on RT with p̃1ΩT \D− = p and

p̃(t, x) =


p
(
− x
Mf′

+ t, 0+
)

for (t, x) ∈ A−
1 ∪A+

1 ,

pT (0+) for x ≤Mf ′(t− T ),

p(θ1+, 0+) for (t, x) ∈ A0
1 ∪D−.

We verify that p̃ is a Lipschitz solution of the extended equation pt + ãpx = 0 on
RT for end data p̃T satisfying p̃x ≥ 0. By construction of ã, p̃ is a Lipschitz solution
of the extended adjoint equation on A±

1 and on {(t, x) ∈ RT : x ≤ Mf ′(t − T )},
see [6]. By the non-degeneracy assumption, y is a classical solution of (1.1) on Ŝ,
hence p is a classical solution of (1.8) on Ŝ. Thus, there is small ε > 0 such that
the solution is constant along the backward characteristics ξ(·; θ1, x) for x ∈ ]0, ε[
with values p(θ1+, x). The non-degeneracy assumption and the continuity of p on the
stripe Ŝ\D− yield limx↘0 p(t, ξ(t; θ1, x)) = p(θ1+, 0+) for all t ∈ ]ϑ1, θ1[. By using the
construction of ã, we deduce that p̃(t, ·) is continuous on R for all t ∈ ]0, T [. Moreover,
we have p̃ = p(θ1+, 0+) on A0

1 ∪ D−. Together with the previous observations, we
deduce that p̃ is a Lipschitz solution of the extended homogeneous adjoint equation.

Next, we analyze the monotonicity of p̃. To this end, we show the monotonic-
ity of p(·, 0+) on ]0, ϑi[∪ ]θi, T [. Denote by Σ ⊂ [0, T ] the set of discontinuities of
f ′(y(·, 0+)). As f ′(y) satisfies the OSLC, f ′(y(t, ·)) ∈ BVloc(Ω) holds and we have

f ′(y(t, x)) → f ′(y(t, 0+)) for x↘ 0.

Let t̄ /∈ Σ and f ′(y(t̄, 0+)) > ρ for some ρ > 0, thus there exists δ > 0 such that
f ′(y(·, 0+)) > ρ/2 on [t̄− δ, t̄+ δ]. Let 0 < h ≤ δ. Choose ε > 0 and multiplying (1.8)
with 1

ε1{x≤ε}(x) and integration over [t̄, t̄+ h]× Ω leads by using px ≥ 0 to

1

ε

∫ ε

0

p(t̄+ h, x)− p(t̄, x) dx = −1

ε

∫ ε

0

∫ t̄+h

t̄

f ′(y(t, x))px(t, x) dtdx

≤ −
∫ t̄+h

t̄

1

ε

∫ ε

0

min{f ′(y(t, x)), 0}px(t, x) dxdt.

Now 1
ε

∫ ε
0
min{f ′(y(t, x)), 0}px(t, x) dx is bounded by ∥f ′(y)px∥∞,]t̄,t̄+h[×]0,ε[ and con-

verges to zero a.e. on ]t̄, t̄ + h[ for ε ↘ 0, since limx↘0 f
′(y(t, x)) = f ′(y(t, 0+)) >
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ρ/2 > 0 on ]t̄− h, t̄+ h[. Hence, the Lebesgue dominated convergence theorem yields

p(t̄+ h, 0+)− p(t̄, 0+) = lim
ε↘0

1

ε

∫ ε

0

p(t̄+ h, x)− p(t̄, x) dx ≤ 0, ∀h ∈]0, δ[

and we conclude that pt(t̄, 0+) ≤ 0 in all points of differentiability t̄ ∈ Σ and thus by
Rademacher’s theorem in a.a. t̄ ∈ Σ. Since Σ is countable, we have shown that

pt(t, 0+) ≤ 0 for a.a. t ∈ ]0, ϑi[∪ ]θi, T [(2.7)

and thus the Lipschitz function p(·, 0+) is monotone decreasing on ]0, ϑi[∪ ]θi, T [.
Since p̃ = p on ΩT \D−, we have p̃x = px ≥ 0 a.e. on ΩT \D−. Moreover, p̃ is

constant on A0
1 ∪D− and on {(t, x) ∈ ΩT : x ≤Mf ′(t− T )}. Let (t, x1), (t, x2) ∈ A+

1

with x1 ≤ x2, then (2.7) yields

p(t, x1) = p
(
− x1

Mf′
+ t, 0+

)
≤ p

(
− x2

Mf′
+ t, 0+

)
= p(t, x2).

As this holds for all (t, x1), (t, x2) ∈ A+
1 , it follows that p̃x ≥ 0 on A+

1 . The same
arguments are applicable on A−

1 .
Together with the previous observations we obtain p̃x ≥ 0 on RT . Now [6, Lemma

4.1.8] shows that p̃ is the reversible solution of pt + ãpx = 0 on RT and therefore p
is the reversible solution on ΩT \ D−, since on this set the definition of reversible
solutions along generalized backward characteristics according to Definition 2.9 and
for reversible solutions on RT , see [6] and [30, Def. 7.5], coincide. As p = pB on D−

holds, p is the reversible solution of (1.8) on ΩT in the sense of Definition 2.9.
If there is more than one transition point, we have to consider the sets

A+
i := {(t, x) ∈ RT : Mf ′ min{t− ϑi, 0} ≤ x ≤ 0},

A−
i := {(t, x) ∈ RT : Mf ′ min{t− ϑi+1, 0} < x ≤Mf ′ min{t− θi, 0}},
A0
i := {(t, x) ∈ RT : Mf ′ min{t− θi, 0} < x < Mf ′ min{t− ϑi, 0}}

for i = 1, . . . , nT and ϑnT+1 = T . Choose

p̃(t, x) =


p
(
− x
Mf′

+ t, 0+
)

for (t, x) ∈
⋃nT

i=1A
±
i ,

pT (0) for x ≤Mf ′(t− T ),

p(θi+, 0+) for (t, x) ∈ A0
i ∪D

−
i , i = 1, . . . , nT

whereby D−
i := {(t, x) ∈ ]ϑi, θi[×Ω: x < ξ(t; θi, 0)}. By the same arguments as before,

p̃ is a Lipschitz solution of pt + ãpx = 0 on RT with p̃x ≥ 0 and applying [6, Lemma
4.1.8] yields the desired result.

Theorem 2.13. Let the assumptions of Proposition 2.12 hold, pT ∈ C0,1(Ω),
p = pB ∈ R on D− and p be a Lipschitz-solution on ΩT \ (D−)cl. Then p is reversible
if and only if there exist Lipschitz-solutions pi on ΩT \(D−)cl and values pBi ∈ R such
that ∂xpi ≥ 0 on ΩT \ (D−)cl for i = 1, 2 and p = p1 − p2.

Proof. We proceed partially as in [6]. We write pT = pT1 − pT2 with pTi ∈ C0,1(Ω)
satisfying ∂xp

T
i ≥ 0 and choose pB1 , p

B
2 ∈ R such that pB = pB1 −pB2 . Let p be reversible

and let pi be the unique reversible solutions for end data pTi and boundary data pBi for
i = 1, 2. Then p = p1 − p2, since the unique reversible solutions form a vector space.
As the end data are propagated along the generalized backward characteristics, we
deduce ∂xpi ≥ 0 on ΩT \ (D−)cl for i = 1, 2.

The converse follows directly from Proposition 2.12 and the fact that the unique
reversible solutions of (1.8) form a vector space on ΩT , see Remark 2.10.
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Lemma 2.14. Let a ∈ C1(R) and pT ∈ C0,1(R). Then a function p ∈ BVloc(RT )
which solves

pt + apx = 0 on RT , p(T, ·) = pT on R
in the sense of distributions is unique.

Proof. It is sufficient to consider the case pT ≡ 0. Let p ∈ BVloc(RT ) be a
function, which solves (1.8) for pT = 0 in the sense of distributions.

Let τ ∈ [0, T [ be arbitrary and for 0 < δ < (T − τ)/2 let ψδ ∈ C∞
c (]τ, T [) with

0 ≤ ψδ ≤ 1 and ψδ ≡ 1 on ]τ + δ, T − δ[.
Let xl < xr be arbitrary and denote by ξl/r(t) the forward characteristics starting

in (0, xl) and (0, xr). Now consider any τ ∈ [0, T [, let ϕτ ∈ C∞
c (]ξl(τ), ξr(τ)[) be

arbitrary and denote by ϕ the classical solution of ϕt+aϕx = 0 on ]τ, T [×R for initial
data ϕ(τ, ·) = ϕτ . Then the support of ϕ is compact, since it is confined by the forward
characteristics ξl/r. The product rule for BV-function gives by using ϕt + aϕx = 0

(ψδ(t)ϕp)t + a(ψδ(t)ϕp)x = ψ′
δ(t)(ϕp) + ψδ(t)ϕ(pt + apx).

After integrating over ]τ, T [×R the last term vanishes, since ψδ(t)ϕ(t, x) is C1 with
compact support and pt + apx = 0 in the sense of distributions, leading to

−
∫ T

τ

∫
R
ψδ(t)(ϕpax)(t, x) dxdt =

∫ T

τ

∫
R
(ψ′
δ(t)(ϕp)(t, x) dxdt.

Since p admits traces at t = τ and t = T and p(T−, ·) = pT = 0, δ ↘ 0 yields

−
∫ T

τ

∫
R
ϕpax dxdt =

∫
R
(ϕτ (x)p(τ+, x)− (ϕp)(T−, x)) dx =

∫
R
ϕτ (x)p(τ+, x) dx.

By taking the supremum over all ϕτ ∈ C∞
c (]ξl(τ), ξr(τ)[) with |ϕτ | ≤ 1 we obtain

∥p(τ+, ·)∥∞,]ξl(τ),ξr(τ)[ ≤
∫ T

τ

∥ax(t, ·)∥1,]ξl(t),ξr(t)[∥p(t, ·)∥∞,]ξl(t),ξr(t)[ dt.

and the Gronwall lemma implies ∥p(t, ·)∥∞,]ξl(t),ξr(t)[ = 0 for a.a. t ∈]0, T [. Since
xl < xr were arbitrary, the proof is complete.

3. Discrete approximation. For the discretization of the state equation (1.1)
we consider conservative finite difference schemes. Let λ > 0 be fixed and set for a
grid size ∆ > 0 with ∆x := ∆

∆t := λ∆x, tn := n∆t, xj := j∆x, Rj := [xj− 1
2
, xj+ 1

2
[, Qnj := [tn, tn+1[×Rj .

For grid values ynj , vj , w
n, n, j ∈ N0 we associate piecewise constant functions by

y∆ =
∑
j,n≥0

ynj 1Qn
j
, yn∆(x) = y∆(tn, x), v∆ =

∑
j≥0

vj1Rj
, w∆ =

∑
n≥0

wn1[tn,tn+1[

and use the convention (y∆)
n
j ≡ ynj , (y

n
∆)j ≡ ynj , (v∆)j ≡ vj , (w∆)

n ≡ wn. Given a

function v ∈ L1
loc(R) we obtain a grid function by the averaging operators

T∆v(x) :=
1

∆x

∫
Rj

v(ξ) dξ, x ∈ Rj and TB∆ v(t) :=
1

∆t

∫ tn+1

tn

v(s) ds, t ∈ [tn, tn+1[.

Finally, we define the difference operators for arbitrary functions ψ ∈ L1(ΩT ) by

∆+ψ(t, x) := ψ(t, x+∆x)− ψ(t, x), ∆−ψ(t, x) := ψ(t, x)− ψ(t, x−∆x).

Let NT such that T ∈ [tNT
, tNT+1[ (analogously we define Nτ for any τ ∈ ]0, T ]).
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3.1. Analysis of the discretized state equation. To discretize (1.1) we con-
sider conservative finite difference schemes of the form

(3.1)

y0j = u0,j , j ≥ 1, yn0 = unB , n = 1, . . . , NT + 1,

yn+1
j = ynj − λ

(
F (ynj , y

n
j+1)− F (ynj−1, y

n
j )
)︸ ︷︷ ︸

=:H(ynj−1,y
n
j ,y

n
j+1)

+∆tGnj , j ≥ 1, n = 1, . . . , NT ,

with consistent numerical flux function F : R× R → R satisfying

F ∈ C1,1(R2) and F (y, y) = f(y) for all y ∈ R.(3.2)

For abbreviation we define the finite difference operator

∆+F (ynj−1, y
n
j ) := F (ynj , y

n
j+1)− F (ynj−1, y

n
j ).

For (u0, uB) ∈ (L∞∩L1)(Ω)×(L∞∩L1)(0, T ) we approximate the controls and source
term by cell averages

u0,j = (T∆u0)j , u
n
B = (TB∆uB)

n, Gnj = g∆(tn, xj), g∆ := TB∆T∆g, j ≥ 1, Gn0 = 0

and as shown in [9] it holds (note that g vanishes for x ≤ εg by (1.2))

u0,∆ → u0 in L1
loc(Ω), uB,∆ → uB in L1([0, T ]), g∆ → g in B(ΩT ).(3.3)

The discrete control-to-state mapping is given by

(u0,∆, uB,∆) 7→ y∆

where y∆ denotes the grid function corresponding to ynj determined by (3.1). As
discrete approximation of the objective functional (1.4) we choose for example

J∆(y∆) =

∫
Ω

γ∆(x)ψ(y∆(T, x), yd,∆(x)) dx =
∑

j≥1
∆xγjψ(y

NT
j , yd,j)

with γj = (T∆γ)j and yd,j = (T∆yd)j and associated grid functions γ∆ and yd,∆.

Definition 3.1. The difference approximation (3.1) is called monotone on [l, r],
if H : [l, r]3 → R is nondecreasing in each argument. If the numerical Flux (a, b) 7→
F (a, b) is differentiable on a neighborhood of [l, r]2 and Fa, Fb denote the partial de-
rivatives with respect to first and second argument, respectively, this is equivalent to

Fa(c, d) ≥ 0, Fb(c, d) ≤ 0, 1− λ(Fa(d, e)− Fb(c, d)) ≥ 0 ∀c, d, e ∈ [l, r].(3.4)

By H(yn∆) we denote the corresponding difference operator for the grid function

H(yn∆)j = H(ynj−1, y
n
j , y

n
j+1)(3.5)

which we will also use for yn∆ defined on R. The difference operator HB(y
n
∆) for the

scheme (3.1) with boundary condition is then given by

yn+1
∆ = HB(y

n
∆) + ∆tgn∆ =

{
H(yn∆) + ∆tgn∆ on [∆x/2,∞[,

un+1
B on [−∆x/2,∆x/2[.

(3.6)

In the following analysis, it will sometimes be convenient to extend the difference
scheme (3.1) on R by setting ynj = yn0 for j < 0.

11



Lemma 3.2. Let the difference operator HB be monotone on [l, r]. Then for grid
functions v∆, w∆ with initial and boundary data v0, w0 ∈ (L1 ∩ L∞)(Ω), vB , wB ∈
(L1 ∩ L∞)(0, T ) with l ≤ v0, w0, vB , wB ≤ r it holds for n = 0, . . . , NT .

(i) mink∈{−1,0,1} v
n
j+k ≤ HB(v

n
∆)j ≤ maxk∈{−1,0,1} v

n
j+k for all j ≥ 1,

(ii) ∥HB(v
n
∆)−HB(w

n
∆)∥1 ≤ ∥vn∆ − wn∆∥1 + λ∆t|vn+1

B − wn+1
B |,

(iii) ∥HB(v
n
∆)∥TV ≤ ∥vn∆∥TV + |vn+1

B − vnB |.
Proof. (i) holds by [7, Lemma 3.1] and (3.6). (ii) and (iii) can be shown as in [9],

see the supplementary material in the appendix.

Now let u0 ∈ (L1 ∩L∞)(Ω) and uB ∈ (L1 ∩L∞)(0, T ) with ∥u0∥∞, ∥uB∥∞ ≤My and
let the scheme HB be monotone on [−My,My]. Then there exists M1 > 0 such that

∥y∆∥∞ ≤My and ∥y∆∥1 ≤M1.(3.7)

We recall the convergence of monotone difference schemes to the entropy solution of
(1.1). Similar results and proofs for higher dimension can be found in [5, 7, 32].

Theorem 3.3. Consider data u0 ∈ (L1 ∩L∞)(Ω) and uB ∈ (L1 ∩L∞)(0, T ). Let
l, r ∈ R such that l ≤ u0, uB ≤ r, let F be a consistent numerical flux and let the
scheme (3.1) be monotone on [l−T∥g∥∞, r+T∥g∥∞]. Then the approximate solutions
of (3.1) converge to the entropy solution of (1.1)

y∆ → y in L∞(0, T ;L1
loc(Ω)) as ∆ ↘ 0(3.8)

and for the trace of the flux function F the following weak convergence holds∫
[0,T [

F (uB,∆(t), y∆(t,∆x))ϕ(t) dt→
∫
[0,T [

f(y(t, 0+))ϕ(t) dt as ∆x↘ 0.(3.9)

Proof. The proof extends standard arguments and is given in the supplementary
material in the appendix. See also [7, 32].

In the continuous case, the entropy solution satisfies the OSLC (2.2) which is needed to
guarantee the existence of a reversible solution to (1.8). To obtain a discrete analogue
of this condition, we consider OSLC consistency of the numerical approximation y∆
as proposed in [29]. To this end, we define for an interval I ⊂ Ω

Lip+∆(y∆(t, ·); I) := ∆x−1 sup
x∈I

max{y∆(t, x+∆x)− y∆(t, x), 0}.

Definition 3.4. A family of grid functions (y∆)0<∆≤∆0
is called OSLC consis-

tent on [τ0, τ1] ⊂ [0, T ] if there exist constants c, C > 0 such that with Nτi such that
τi ∈ [tNτi

−1, tNτi
[, i = 0, 1, it holds for Nτ0 ≤ n ≤ Nτ1

Lip+∆(y∆(tn, ·); Ω) ≤
(
c(tn − tNτ0

) + (Lip+∆(y∆(τNτ0
, ·)))−1

)−1
+ C.(3.10)

3.2. Suitable numerical flux functions. The Engquist-Osher scheme (EO-
scheme) has the numerical flux function

FEO(y0, y1) = f(ȳ) +

∫ y0

ȳ

f ′(y)+ dy +

∫ y1

ȳ

f ′(y)− dy

with f ′(y)+ := max{f ′(y), 0}, f ′(y)− := min{f ′(y), 0}, and ȳ ∈ R is fixed, see [11].
FEO is indepent of ȳ and for convenince we choose the sonic point ȳ = σ, i.e. f ′(σ) =
0, which exists in our setting. The Godunov scheme (G-scheme) has numerical flux

FG(y0, y1) = f(w(∆t, 0)),
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where w solves the Riemann-Problem

wt + f(w)x = 0, w(0, x) = y11{x>0}(x) + y01{x≤0}(x).

Both fluxes are monotone, cf. Definition 3.1, if the CFL condition

λ sup
|y|≤My

|f ′(y)| ≤ 1− ρ, ρ ∈ [0, 1[.

is satisfied. In the considered case, where f is strictly convex, the G-flux coincide
with the EO-flux except for the transonic case y1 < σ < y0 where

FEO(y0, y1) = f(y0) + f(y1)− f(σ) and FG(y0, y1) = max{f(y0), f(y1)}.

Note that FG ∈ C0,1(R2) is not everywhere differentiable. Later, we will use amodified
Engquist-Osher scheme (mEO-scheme), which applies the Engquist-Osher flux in the
interior and the Godunov flux at the boundary. This yields the scheme

yn+1
1 = yn1 − λ(FEO(yn1 , y

n
2 )− FG(yn0 , y

n
1 )),

yn+1
j = ynj − λ∆+FEO(ynj−1, y

n
j ), j ≥ 2,

(3.11)

for all n = 0, . . . , NT −1. We call this scheme modified Engquist-Osher scheme (mEO-
scheme). The choice of the Godunov flux on the boundary will be critical to show the
critical convergence results (3.13), (3.14) and Lemma 3.7 on the boundary cells and
to obtain the correct coefficients in the adjoint scheme at the boundary.

Lemma 3.5. Let f ∈ C2(R) be strictly convex with f ′′ ≥ mf ′′ > 0, let u0 ∈ L∞(Ω)
and let uB ∈ L∞(0, T ) with f ′(uB) ≥ β > 0 on [0, T ]. Moreover, let Lg be a Lipschitz
constant of g with respect to x. Let the CFL-condition

λ sup
|y|≤My

|f ′(y)| ≤ 1− ρ

2
, ρ ∈ [0, 1[(3.12)

hold and the solution of (3.11) fulfill ∥y∆∥∞ ≤My for all ∆ ≤ ∆0 and some My > 0.
Finally, let [τ0, τ1] ⊂ [0, T ] be an interval with u′B |[τ0,τ1] ≥ −CB for a constant CB ≥ 0.
Then for all 0 < ∆ ≤ ∆0 the solution y∆ of (3.11) satisfies with some c > 0 and

C = max
{
CB

λβ ,
√
Lg/c

}
the OSLC consistency (3.10).

Proof. The proof refines arguments for initial value problems and is given in the
supplementary material in the appendix.

Lemma 3.6. Let the assumptions of Theorem 3.3 hold and assume that the bound-
ary control uB satisfies f ′(uB) ≥ β for small β > 0. Let the CFL-condition (3.12)
hold and y∆(·,∆x) be determined by the mEO-scheme from (3.11). Then it holds

FG(uB,∆, y∆(·,∆x)) → f(y(·, 0+)) in L1(0, T ) as ∆ → 0(3.13)

and one has on the outflow boundary TB := {t ∈ ]0, T [ : f ′(y(t, 0+)) < 0} for ∆ → 0

(3.14) FGa (uB,∆, y∆(·,∆x)) → 0, FGb (uB,∆, y∆(·,∆x)) → f ′(y(·, 0+)) in L1(TB).

Proof. Let ∆0 > 0 be sufficiently small and denote by σ the sonic point of f , i.e.,
f ′(σ) = 0. Under the given assumptions the Godunov flux reads

FG(unB , y
n
1 ) =

{
f(yn1 ) for yn1 < σ, f(yn1 ) > f(unB),

f(unB) else.
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Let M ⊂ [0, T ] be a set where Lip+∆(y∆(t, ·); Ω) ≤ L with some L > 0 for all t ∈ M
uniformly in ∆ ≤ ∆0. This is the case, ifM has distance > κ from rarefaction centers
with arbitrary κ > 0.

Since y is a BV function, we have limx↘0 ∥y(·, 0+) − y(·, x)∥1,M = 0. Let δ > 0
be arbitrary and define the set M−

∆ (δ) = {t ∈M : y∆(t,∆x) ≤ y(t, 0+)− δ}. Then

y∆(t, x) ≤ y(t, 0+)− δ/2, ∀ (t, x) ∈M−
∆ (δ)×]0, δ/(2L)].

We show that

∥(y(·, 0+)− y∆(·,∆x))+∥1,M → 0(3.15)

where (a)+ := max{a, 0}, a ∈ R. If not, there exists (∆k) → 0 and ε > 0 with

∥(y(·, 0+)− y∆k
(·,∆kx))+∥1,M ≥ ε, ∀ k.(3.16)

Since ∥y∆−y∥1,M×]0,δ/(2L)] → 0 by Theorem 3.3, we find a subsequence again denoted
by (∆k) and (xk) → 0 with ∥y∆k

(·, xk)−y(·, xk)∥1,M×]0,δ/(2L)]→ 0 as ∆k → 0. Hence,

∥y(·, 0+)− y(·, xk)∥1,M−
∆k

(δ) + ∥y(·, xk)− y∆k
(·, xk)∥1,M−

∆k
(δ)

≥ ∥y(·, 0+)− y∆k
(·, xk)∥1,M−

∆k
(δ) ≥ Λ(M−

∆k
(δ))δ/2

and the left hand side tends to 0 for ∆k → 0. Here Λ(·) denotes the Lebesgue measure
on R. We conclude that Λ(M−

∆k
(δ)) → 0 for ∆k → 0 and thus

∥(y(·, 0+)− y∆k
(·,∆kx))+∥1,M ≤ δΛ(M) + Λ(M−

∆k
(δ))2My → δΛ(M) for ∆k → 0.

Since δ > 0 was arbitrary, we conclude that ∥(y(·, 0+) − y∆k
(·,∆kx))+∥1,M → 0 as

∆k → 0, a contradiction to (3.16). Hence, (3.15) is shown.
Let A = {t ∈ M : y(t, 0+) = uB(t)}. By our assumptions on uB we find δ > 0

with uB ≥ σ + δ and thus also uB,∆ ≥ σ + δ. Hence, we have

FG(uB,∆(t), y∆(t,∆x)) =

{
f(uB,∆(t)) if t ∈ A \M−

∆ (δ),

∈ {f(uB,∆(t)), f(y∆(t,∆x))} if t ∈ A ∩M−
∆ (δ).

Now (3.15) implies Λ(M−
∆ (δ)) → 0 as ∆ → 0 and we conclude that

FG(uB,∆, y∆(·,∆x)) → f(uB) in L1(A) as ∆ → 0.(3.17)

It remains to study the convergence onM \A. If the boundary control is not attained
in the BLN sense then y(t, 0+) < σ and f(uB(t)) < f(y(t, 0+)). The non-degeneracy
assumption yields ε > 0 such that f(uB(t)) + ε < f(y(t, 0+)) is satisfied. Consider
M+

∆(δ) = {t ∈M : y∆(t,∆x) > y(t, 0+) + δ} for arbitrary δ > 0. We will show that

Λ(M+
∆(δ) \A) → 0 as ∆ → 0.(3.18)

Since δ > 0 is arbitrary, this implies with (3.15) that

∥y(·, 0+)− y∆(·,∆x)∥1,M\A → 0 as ∆ → 0(3.19)

and since FG(uB , y(·, 0+)) = f(y(·, 0+)) and FG is Lipschitz on [−My,My]
2,

FG(uB,∆, y∆(·,∆x)) → f(y(·, 0+)) in L1(M \A) as ∆ → 0.(3.20)
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Now (3.14) follows immediately, since f(uB) + ε < f(y(·, 0+)) on M \A.
We still have to show (3.18). For ∆0 > 0 small enough we have f(uB,∆) + ε/2 <

f(y(·, 0+)) on M \A and for all ∆ ≤ ∆0 it holds

FG(uB,∆, y∆(·,∆x)) =


f(y∆(·,∆x)) on M1,∆ :=M−

∆ (0) \A,
f(y∆(·,∆x)) on M2,∆ := (M+

∆(0) \A)
∩{y∆(·,∆x) < σ, f(y∆(·,∆x)) > f(uB,∆)},

f(uB,∆) on the remaining part M3,∆ of M \A.

Now we obtain by (3.15)

∥FG(uB,∆, y∆(·,∆x))− f(y(·, 0+))∥L1(M1,∆) → 0,(3.21)

FG(uB,∆, y∆(·,∆x)) =


f(y∆(·,∆x)) ≤ f(y(·, 0+)) on M2,∆,

f(y∆(·,∆x)) ≤ f(y(·, 0+))− mf′′

2 δ2 on M2,∆ ∩M+
∆(δ),

f(uB,∆) ≤ f(y(·, 0+))− ε/2 on M3,∆.

Now consider (3.9) for arbitrary ϕ ∈ C1
c (M), ϕ ≥ 0. Then∫

M

(f(y(t, 0+))− FG(uB,∆(t), y∆(t,∆x)))ϕ(t) dt

=

∫
A∪M1,∆

(f(y(t, 0+))− FG(uB,∆(t), y∆(t,∆x)))ϕ(t) dt

+

∫
(M2,∆\M+

∆(δ))∪(M2,∆∩M+
∆(δ))

(f(y(t, 0+))− f(y∆(t,∆x)))ϕ(t) dt

+

∫
M3,∆

(f(y(t, 0+))− f(uB,∆(t)))ϕ(t) dt

≥
∫
A∪M1,∆

(f(y(t, 0+))− FG(uB,∆(t), y∆(t,∆x)))ϕ(t) dt

+

∫
M+

∆(δ)\A
min{δ2mf ′′/2, ε/2}ϕ(t) dt.

For ∆ → 0 the left hand side tends to 0 by (3.9) and the first term on the right tends
to 0 by (3.17) and (3.21). Since ϕ ∈ C1

c (M), ϕ ≥ 0, is arbitrary, (3.18) follows.
Hence, the claim is shown on M and M ∩ TB . Since ]0, T [ can be exhausted by

sets M and the involved functions are uniformly bounded, the proof is complete.

Lemma 3.7. Under the assumptions of Lemma 3.6 let y∆ be computed by (3.11).
Let IB = [τ1, τ2] ⊂ TB be a subinterval of the outflow boundary that has distance ≥ κ
from rarefaction centers with arbitrary κ > 0. Then for every δ > 0 there is ∆′ < ∆0

such that it holds

y∆(t,∆x) < σ and f(y∆(t,∆)) > f(uB,∆(t)) for all ∆ ≤ ∆′, t ∈ [τ1 + δ, τ2].

Proof. Let IB = [τ1, τ2] be as above and δ > 0 be arbitrary. By Lemma 3.5 for
all 0 < ∆ ≤ ∆0 the discrete OSLC (3.10) holds with τ0 = τ1 − κ for y∆(t, ·) for all
t ∈ IB . Thus, we find C > 0 such that Lip+∆(y∆(t, ·); Ω) ≤ C for all t ∈ IB .

We show that possibly after reducing ∆0 for all 0 < ∆ ≤ ∆0 the implication holds

tn ∈ IB , yn1 < σ, f(yn1 ) > f(yn0 ) =⇒ yn+1
1 − yn1 ≤ LfC∆t.(3.22)
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In fact, by assumption we have f ′(uB) ≥ β > 0 and thus also f ′(yn0 ) ≥ β > 0. Now
let the left hand side hold. Then f ′(yn0 ) ≥ β > f ′(σ) = 0 implies the existence of
ε > 0 with yn1 < σ− ε. Hence, for ∆0 ≤ ε/C the discrete OSLC ensures yn2 < σ. Now
(3.22) follows, since the scheme (3.11) yields

yn+1
1 − yn1 = −λ(f(yn2 )− f(yn1 )) ≤ λLf (y

n
2 − yn1 )+ ≤ LfC∆t.

Now the non-degeneracy assumption ensures y(·, 0+) < σ − ε and f(y(·, 0+)) −
f(uB) > ε on IB for small ε > 0. From the proof in Lemma 3.6, see (3.19), we know
that y∆(·,∆x) → y(·, 0+) in L1(IB). Therefore the measure of the set

E∆ := {t ∈ IB : f(y∆(t,∆x))− f(uB,∆(t)) ≤ ε/2 or y∆(t,∆x) ≥ σ − ε/2}

tends to zero for ∆ → 0. Hence, for any 0 < δ′ < δ we find 0 < ∆δ′ ≤ ∆0 such
that Λ(E∆) < δ′ for all ∆ < ∆δ′ and thus for any t ∈ [τ1 + δ, τ2] there exists
s ∈ [t− δ′, t] ⊂ IB with s ∈ IB \ E∆ for all ∆ < ∆δ′ .

Now choose 0 < δ′ ≤ min{δ, ε/(4max{1, Lf}LfC)}. Assume that the assertion
of the lemma is wrong. Then we find sequences ∆k ↘ 0 and (sk) ⊂ [τ1 + δ, τ2] with
∆k ≤ ∆δ′/2 and

y∆k
(sk,∆kx) ≥ σ or f(y∆k

(sk,∆kx)) ≤ f(uB,∆k
(sk)) for all k.(3.23)

Then sk ∈ E∆k
for all k. As shown above, we find s′k ∈ [sk − δ′/2, sk] with s′k ∈

IB \ E∆k
. Starting with tn = s′k we can apply (3.22) iteratively at least up to any

tm > tn with LfC(tm − tn) ≤ ε/(2max{1, Lf}) and thus up to some tm ≥ tn + δ′.
Hence, y∆k

(·,∆k) has by (3.22) a discrete one-sided Lipschitz constant LfC on the
interval [s′k, s

′
k + δ′] that contains sk. But since s

′
k ∈ IB \E∆k

, the discrete one-sided
Lipschitz constant LfC implies that y∆k

(sk,∆k) ≤ y∆k
(s′k,∆x) + LfCδ

′ ≤ ȳ − ε/4
and f(y∆k

(sk,∆k)) ≥ f(y∆k
(s′k,∆k)) − LfLfCδ

′ ≥ f(uB,∆k
(sk)) + ε/4. This is a

contradiction to (3.23) and the proof is complete.

3.3. Analysis of the adjoint scheme. The adjoint scheme reads

pnj =
∑1

k=−1
Bn+1
j,k pn+1

j−k , j ≥ 1, n = 0, . . . , NT − 1

pNT
j = (T∆p

T )j , j ≥ 1, pn0 = pB , n = 0, . . . , NT

(3.24)

Bnj,−1 = λFa(y
n
j , y

n
j+1), Bnj,1 = −λFb(ynj−1, y

n
j ), Bnj,0 = 1−Bnj,−1 −Bnj,1.(3.25)

with constant boundary data pB ∈ R. A derivation of the adjoint scheme can be
found in [15, 25, 31] using the discrete Lagrangian. Let δu∆ = (δu0,∆, δuB,∆) with
the cell averages δu0,∆ = T∆δu0 and δuB,∆ = TB∆ δuB . Together with standard adjoint
calculus the discrete adjoint formulation of the derivative of the objective J(y(u)) is
given by

du∆
J∆(y∆(u∆)) · δu∆ =

∫
Ω

p∆(0, x)δu0,∆(x) dx

+

∫ T−∆t

0

p∆(t+∆t,∆x)Fa(uB,∆(t), y∆(t,∆x))δuB,∆(t) dt

(3.26)

where p∆ denotes the grid function to pnj determined by (3.24) with pB = 0.
As in the continuous case, we require the function F to fulfill a discrete OSLC.
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Lemma 3.8. Let the flux F satisfy (3.2) and let Fa, Fb be monotone increasing
with respect to both arguments (this is the case for FEO and FG). If the solution of
(3.1) fulfills (3.10) on [τ0, τ1] ⊂ [0, T ] then for all ν > 0 there is α ∈ L1(τ0 + ν, τ1)
such that the weak discrete OSLC

∆+Fa(y
n
j , y

n
j+1) + ∆+Fb(y

n
j−1, y

n
j ) ≤

∆x

∆t

∫ tn+1

tn

α(s) ds

is satisfied for all j ≥ 1 and n = Nτ0+ν , . . . , Nτ1 − 1.

Proof. By (3.10) we find for all ν > 0 a γ ∈ L1(τ0 + ν, τ1) with ∆+ynj ≤
∆x
∆t

∫ tn+1

tn
γ(s) ds. Since Fa, Fb are Lipschitz and monotone, the assertion follows.

Taking the difference of the discrete adjoint state for j + 1 and j leads to

∆+pnj =
∑1

k=−1
Cnj,k∆

+pn+1
j−k ,(3.27)

Cnj,−1 = λFa(y
n
j+1, y

n
j+2), C

n
j,1 = −λFb(ynj−1, y

n
j ), C

n
j,0 = 1− Cnj−1,−1 − Cnj+1,1.(3.28)

3.3.1. A priori estimates for the adjoint scheme. Consider end data pT ∈
C0,1
b (Ω) and constant boundary data pB ∈ R. Since the discrete end data are given

by cell averages, there are MT , LT ,∆0 > 0 such that for ∆ ≤ ∆0 it holds, e.g. [9],

∥pT∆∥∞ ≤MT , |pT∆|Lip∆(Ω) ≤ LT , pT∆ → pT in Bloc(Ω) as ∆ → 0.(3.29)

Lemma 3.9. Let ynj ∈ [l, r] and let the monotonicity condition (3.4) hold. Then

pnj is a convex combination of pn+1
j−1 , p

n+1
j , pn+1

j+1 . Hence, the linear operator

A : ((pNT
j )j∈N, (p

n
0 )1≤n≤NT

) ∈ ℓ∞ 7→ (pnj )j∈N,0≤n≤NT
∈ ℓ∞

has operator norm ≤ 1 and values in the convex hull of the boundary and end data.

Proof. This results from (3.24), the non-negativity of Bnj,k and
∑1
k=−1B

n
j,k = 1.

By this we obtain the following.

Lemma 3.10. Let ynj ∈ [l, r] for all j ∈ N0, n ∈ {0, . . . , NT − 1} and let the
monotonicity condition (3.4) hold. Then the solution of the adjoint scheme satisfies

|pnj | = ∥p∆∥B(Qn
j )

≤ max{∥pT∆∥B(Jn
j ), |pB |}

with Jnj :=]max{0, xj − (NT − n)∆x}, xj + (NT − n)∆x[.

Proof. This follows directly by applying Lemma 3.9.

Lemma 3.11. Let ynj ∈ [l, r] for all j ∈ N0 and let the monotonicity and CFL
condition (3.4) hold. Then the solution of the adjoint scheme satisfies the BV-estimate∑

j∈N0

|pnj+1 − pnj | ≤
∑

j∈N0

|pn+1
j+1 − pn+1

j |.

Proof. If we set pn+1
j = pB and ynj = yn0 for j < 0 and denote the corresponding

values obtained by the scheme by p̃nj , we obtain by (3.27), (3.28)∑
j∈Z

|p̃nj+1 − p̃nj | ≤
∑

j∈Z
|pn+1
j+1 − pn+1

j |.

Now pnj = p̃nj for j ≥ 1 and p̃nj = pB for j ≤ −1. Hence, |pn1 − pn0 | = |p̃n1 − p̃n−1| ≤
|p̃n1 − p̃n0 |+ |p̃n0 − p̃n−1|. This shows that∑

j∈N0

|pnj+1 − pnj | ≤
∑
j∈Z

|p̃nj+1 − p̃nj | ≤
∑
j∈Z

|pn+1
j+1 − pn+1

j | =
∑
j∈N0

|pn+1
j+1 − pn+1

j |.

17



3.3.2. Convergence of the adjoint scheme. We proceed partially as in [25,
29]. The main difficulty arises from the fact that the Lipschitz bound of the end data is
not transferred to the discretized adjoint state, as it fails to hold near the boundary.
This property was crucial to prove convergence in [15, 25, 29]. We overcome this
problem by using a Lip+-interpolation estimate of [28, Lemma 2.1].

Theorem 3.12 (Convergence of the discrete adjoint to the reversible solution).
Let pT ∈ C0,1(Ω) and pB be constant and let the non-degeneracy condition (ND) be
satisfied. Assume that y∆ is generated by the scheme (3.11) and let the CFL-condition
(3.12) be satisfied, then the solution of (3.24) based on the mEO-scheme from (3.11)
converges to the unique reversible solution p of (1.8), more precisely,

p∆ → p in B([0, T ];L1
loc(Ω)) as ∆ → 0.(3.30)

Moreover, the convergence is uniform on all bounded sets that have a positive distance
from rarefaction centers, the boundary of D− and from shock points at {x = 0}.

Proof. Step 1: Convergence to some function p. Under the given CFL-condition
the mEO-scheme is monotone and OSLC consistent by Lemma 3.5. Due to Lemma
3.11 the grid function p∆(t, ·) is bounded in BV, so by [2, Theorem 3.23] we can
select a diagonal subsequence (∆′

i) such that p∆′
i
(t̄, ·) converges for all t̄ ∈ S in a

dense subset S ⊂ [0, T ] in L1(0, R) for all R > 0. If we now show that t ∈ [0, T ] 7→
p∆′

i
(t, ·) ∈ L1(0, R) is equicontinuous, (3.30) follows by an Arzela-Ascoli argument.

For arbitrary 0 ≤ t1 < t2 ≤ T it holds

(3.31) p∆′
i
(t2, x)− p∆′

i
(t1, x) =

∑Nt2
−1

n=Nt1

(pn+1
∆′

i
(x)− pn∆′

i
(x)).

The adjoint scheme (3.24) yields

|pn+1
j − pnj | ≤ λ

∣∣Fa(ynj , ynj+1)∆
+pn+1

j + Fb(y
n
j−1, y

n
j )∆

+pn+1
j−1

∣∣ .
Set I =]z1, z2[⊂ Ω. Summing the above inequality for {j : Λ(Rj ∩ I) > 0} =
{j : xj+1/2 ∈]z1, z2 +∆′

ix[} with weights Λ(I ∩Rj) yields

∥pn+1
∆′

i
(x)− pn∆′

i
(x)∥1,I ≤ ∆′

it 2Mf ′∥pn+1
∆′

i
∥TV (]z1−∆′

ix,z2+∆′
ix[)

where we set again pn+1
j = pB for j < 0 for all n. Altogether, there is a constant

depending on pT∆ such that ∥p∆′
i
(t + ∆′

it, x) − p∆′
i
(t, x)∥1,I ≤ const · ∆′

it for all t ∈
[0, T − ∆t]. With (3.31) we deduce that p∆′

i
is equicontinuous in time and by an

Arzela-Ascoli argument (3.30) is satisfied. Moreover, the equicontinuity in time gives
p ∈ B([0, T ];BVloc(Ω))∩BVloc(ΩT ) by the lower semicontinuity of the BV-norm under
L1-convergence. To shorten the notation, we write in the sequel ∆ instead of ∆′

i.
Step 2: Limit p attains end data. In the next step, we prove that the limit

function p is a solution to the adjoint equation (1.8). By the above inequality p∆(t, ·)
is equicontinuous, thus for all t ∈ [T −∆t, T ] it holds

∥p∆(t, ·)− p∆(T, ·)∥1,[0,R] ≤ const · (|T − t|+∆t).(3.32)

Moreover, (3.29) ensures ∥p∆(T, ·) − pT∆∥B([0,R]) → 0, thus including (3.30) yields as
required limt↗T ∥p(t, ·)− pT ∥1,[0,R] = 0.

Step 3: Limit p attains boundary data. The previous statements are satisfied for
arbitrary monotone numerical flux functions. To show that the limit function p attains
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the boundary data in the correct sense, we use the modified Engquist-Osher scheme
from (3.11). Let {θ1, . . . , θnT

} be the transition points of f ′(y(·, 0+)), see Definition
2.3, and denote as above the outflow boundary by TB := {t ∈ ]0, T [ : f ′(y(t, 0+)) < 0}.
By Lemma 2.4 TB consists of nT intervals with endpoints θi, i = 1, . . . , nT . Choose
an arbitrary interval IB = [τ1, τ2] ⊂ TB having an arbitrary distance κ > 0 from
rarefaction centers.

By Lemma 3.5 for all 0 < ∆ ≤ ∆0 the discrete OSLC (3.10) holds with τ0 = τ1−κ
for y∆(t, ·) for all t ∈ IB . Thus, we find C > 0 such that Lip+∆(y∆(t, ·); Ω) ≤ C for all
t ∈ IB . Then by Lemma 3.7 for any δ > 0 there is ∆′ > 0 such that for all 0 < ∆ < ∆′

it holds f(yn1 ) > f(yn0 ) and y
n
1 < σ for n ∈ {Nτ1+δ, . . . , Nτ2 − 1}. By assumption we

have f ′(uB) ≥ β > 0 and thus also f ′(yn0 ) ≥ β > f ′(σ) = 0. Hence, by f(yn1 ) > f(yn0 )
and yn1 < σ there exists ε > 0 with yn1 < σ − ε. Since the grid function y∆ is OSLC-
consistent on [τ1, τ2] × Ω, there is a sufficiently small ρ > 0 such that for ∆ ≤ ∆′ it
holds ynj < σ and thus f ′(ynj ) < 0 for all n, j ∈ N with (tn, xj) ∈ [τ1 + δ, τ2]× [0, ρ[.

Hence, FG(yn0 , y
n
1 ) = f(yn1 ) and FEO(ynj , y

n
j+1) = f(ynj+1) and therefore (3.24)

yields pnj = (1 + λf ′(ynj ))p
n+1
j − λf ′(ynj )p

n+1
j−1 for j ≥ 1 with xj < ρ and n ∈

{Nτ1+δ, . . . , Nτ2 − 1}. Since f ′(ynj ) < 0 holds, we obtain with αnj = λ|f ′(ynj )| that
pnj = (1−αnj )p

n+1
j +αnj p

n+1
j−1 . For brevity, we set N1 := Nτ1+δ, N2 = Nτ2 . Then, since

pn0 = pB for all n, we obtain inductively

pN1
j =

∑j

l=0
wN2

l pN2

l , wN2

l ≥ 0,
∑j

l=0
wN2

l = 1,(3.33)

wN2

l =
∑

{n1<...<nj−l}⊂{N1,...,N2−1}

j−l∏
k=1

(
αnk

j−k+1

nk+1∏
n=nk+1

(1− αnj−k+1)

)
, l = 1, . . . , j,

with nj−l+1 = N2 − 1. If now α ∈ ]0, αnl ] and β ∈ [αnl , 1[ holds for all 1 ≤ l ≤ j and
N1 ≤ n ≤ N2, the weights can be estimated by

wN2

l ≤
(
N2−N1

j−l
)
βj−l(1− α)N2−N1−j+l, l = 1, . . . , j.

Let N = N2 −N1, fix m > 0 such that 1
m < α and consider j with jm ∈]N −m,N ]

for fixed m such that 1
m < α. Observe that m is independent of the grid size ∆. We

want to derive an upper bound for
∑j
l=1 w

N2

l . We have wN2

l ≤ (β/α)j−l
(
N
j−l
)
αj−l(1−

α)N−j+l, where the right hand side is an integral over the tail of a binomial distri-
bution X with expected value E(X) = αN and variance V (X) = α(1 − α)N . As a
consequence of Stirlings formula, one obtains the estimate(

N
l

)
αl(1− α)N−l ≤ C√

2πV (X)
e
−

(l−E(X))2

2V (X)

for 0 < α < 1/2 and l < αN , see [12, Thm. VII.3.1, Prob. VII.7.13, Prob. VII.7.15]
and a straightforward extension of the arguments there to the tail αN−l

N = O(1).

Hence, the substitution s = t−E(X)√
V (X)

leads to

∑j

l=1
wN2

l ≤ (β/α)j
∑j

l=0

(
N
l

)
αl(1− α)N−l ≤ (β/α)j C√

2πV (X)

∫ j
−∞ e−

(t−E(X))2

2V (X) dt

= (β/α)j C√
2π

∫ j−E(X)√
V (X)

−∞
e−

s2

2 ds ≤ eln(
β
α )N

m C√
2π

∫ ( 1
m

−α)N√
Nα(1−α)

−∞
e−

s2

2 ds

≤ eln(
β
α )N

m C√
2π

∫ 2( 1
m−α)

√
N

−∞
e−

s2

2 ds = C√
2π

∫ 2( 1
m−α)

√
N

−∞
e−

s2

2 +ln( β
α )N

m ds
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for a constant C > 0. Now choose m such that α− 1
m > α

2 and 1
m ln(βα ) <

α2

4 . Then

for s ≤ 2( 1
m − α)

√
N ≤ −α

√
N it holds −s2/4 ≤ −Nα2/4 ≤ − ln (β/α)N/m and

therefore − s2

2 + ln
(
β
α

)
N
m ≤ − s2

4 . Altogether, we obtain

∑j

l=1
wN2

l ≤ (β/α)j
∑j

l=0

(
N
l

)
αl(1− α)N−l ≤ C√

2π

∫ −α
√
N

−∞ e−
s2

4 ds → 0

as N → ∞ and together with (3.33), for all xj < ρ we deduce

pN1

∆ (xj)− pB =
∑j

l=1
wN2

l (pN2

∆ (xl)− pB) + (wN2
0 − 1)pB → 0 as ∆ → 0.(3.34)

Hence, varying δ and m we have shown that the limit function p satisfies p =
pB on {(t, x) ∈]τ1, τ2]×]0, ρ[: x < min{α/2, α2/(4 ln(β/α))}(τ2 − t)}. Moreover, the
convergence is for each δ > 0 uniform on

{(t, x) ∈]τ1 + δ, τ2]×]0, ρ[: x < min{α/2, α2/(4 ln(β/α))}(τ2 − t)}.(3.35)

By varying τ1 and τ2 we can exhaust the outflow domain TB up to a set of measure
zero and conclude that the trace of p satisfies p(·, 0+)|TB

= pB a.e. and thus the limit
function p attains the boundary data in the correct sense.

Step 4: Limit p is the reversible solution. We now prove that the limit function
of the adjoint scheme is actually the reversible solution of the adjoint equation (1.8).
The adjoint scheme yields for (t, x) ∈ [∆t, T [×[∆x/2,∞[

p∆(t,x)−p∆(t−∆t,x)
∆t +

(
Fa(y∆(t, x), y∆(t, x+∆x))∆

+p∆(t,x)
∆x

+ Fb(y∆(t, x−∆x), y∆(t, x))
∆+p∆(t,x−∆x)

∆x

)
= 0

(3.36)

Since Lemma 3.11 implies that ∆+p∆
∆x is bounded in L1

loc(ΩT ) uniformly in ∆, we

conclude that also p∆(·,·)−p∆(·−∆t,·)
∆t is bounded in L1

loc(ΩT ) uniformly in ∆. Hence,
the convergence (3.30) yields p ∈ BVloc(ΩT ) and

p∆−p∆(·−∆t,·)
∆t → pt,

∆+p∆
∆x → px in D′(ΩT ) and L

1
loc(ΩT )-weak

∗ as ∆ → 0.(3.37)

We split pT in monotone parts pT = pT1 − pT2 with pTl ∈ C0,1(Ω), (pTl )x ≥ 0, l = 1, 2.
Let pB,l ≤ pTl (0), l = 1, 2, with pB = pB,1 − pB,2. Denote by p, pl the reversible
solutions of the adjoint equation for data pT , pB and pTl , pB,l, l = 1, 2, respectively.
Now let pT∆ = T∆p

T , pTl,∆ = T∆p
T
l , l = 1, 2, and p∆ the solution of the adjoint scheme

for data pT∆, pB and pl,∆ the solution of the adjoint scheme for data pTl,∆, pB,l, l = 1, 2,
respectively. Then by linearity p∆ = p1,∆ − p2,∆, we show now that pl,∆ → pl in the
sense of Theorem 3.12. Then p∆ → p converges in the same sense.

Therefore, we can without restriction consider monotone data pT ∈ C0,1(Ω), pTx ≥
0 and pB ≤ pT (0). By the previous results there exists a subsequence ∆i → 0 such
that p∆i → p in B([0, T ];L1

loc(Ω)). Moreover, p attains the end data and boundary
data in the right sense. Under the CFL-condition we have Bnj,k, C

n
j,k ≥ 0 for the

coefficients in (3.25), (3.28). Therefore, the monotonicity of p∆ and pB ≤ pT∆(0) yield

with (3.24) p∆(t, 0) = pB ≤ p∆(t, x) for (t, x) ∈ ΩT and thus by (3.27) ∆+p(t,x)
∆x ≥ 0

for all (t, x) ∈ ΩT . Hence, the limit function satisfies px ≥ 0.
To prove that the limit function p is a solution of the adjoint equation, we split

the domain ΩT into three parts; 4.1) the domain outside of the shock funnels, where
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y is a classical solution; 4.2) the shock funnels without the closure (D−)cl of the
outflow domain; 4.3) the outflow domain D−. By our previous results there exists
a subsequence ∆i → 0 such that pl,∆i

→ pl in B([0, T ];L1
loc(Ω)). With the CFL-

condition the adjoint scheme is monotone leading to ∆+p(t,x)
∆x ≥ 0 for all (t, x) ∈ ΩT ,

By the nondegeneracy assumption (ND) the entropy solution y(T, ·) has finitely
many nondegenerated shocks at 0 < x̄1 < · · · < x̄K and is piecewise C1, see also
Theorem 2.8. Let x̄k be a shock location of y(T, ·) and ξ±k the minimal/maximal
characteristic through (T, x̄k).

Denote by Dk ⊂ ΩT the shock funnel confined by ξ−k , ξ
+
k and by the lines {x = 0}

and {t = 0}. Similarly, denote for arbitrary 0 < δ ≪ 1 by Dk,δ the domain confined

by ξ−k − δ, ξ+k + δ and by the lines {x = 0} and {t = 0}. Let S := ΩT \ (
⋃K
k=1Dk) be

the domain between the shock funnels and set Sδ := (]δ, T [×]δ, 1δ [) \ (
⋃K
k=1Dk).

4.1) We consider the domain S. By the theory of generalized characteristics
[10, 22], see also [24], S is covered by genuine backward characteristics that end
at {x = 0} or {t = 0} and y coincides on S with the solution of the characteristic
equations (2.3) and is thus C1 on S outside of any neighborhood of rarefaction centers.
Let 0 < δ ≪ 1 be arbitrary. Then y is in C1

b (S
cl
δ ) and y∆ satisfies by Lemma 3.5 on

[δ, T ] × [δ, 1δ ] ⊃ Sδ the discrete OSLC (3.10) with τ0 = 0. Moreover, Theorem 3.3
yields ∥y∆ − y∥B([0,T ];L1(]δ, 1δ [)

→ 0 as ∆ ↘ 0. Applying now for all t ∈]δ, T [ the
interpolation inequality [28, Lemma 2.1] for the difference of a one-sided Lipschitz
continuous function and a C1-function, which can be applied uniformly in t, we obtain
with a constant C > 0 and Iδ := [δ, 1δ ] for ∆ ↘ 0 with e∆ := y∆ − y

∥e∆∥B(S2δ) ≤ C∥e∆∥
1
2

B([0,T ];L1(Iδ))

(
sup
t∈[δ,T ]

Lip+∆(y∆(t, ·); Iδ) + ∥y∥C1(Scl
δ )

)1
2

→ 0.(3.38)

Now we show that p satisfies the adjoint equation (1.8) on S in the distributional sense.
Let ψ ∈ Cc(S)

∞ be arbitrary. Then there is δ > 0 such that supp(ψ) ⊂ S3δ. For the
Engquist-Osher-flux Fa and Fb are continuous. Therefore, the uniform convergence
on S2δ and the continuity of y on Sδ yield Fa(y∆(·, ·), y∆(·, · + ∆x)) → Fa(y, y) and
Fb(y∆(·, ·−∆x), y∆(·, ·)) → Fb(y, y) in B(S2δ). This together with (3.37) allows limit
transition for (3.36) in L1(S2δ)-weak

∗ and thus in D′(S) and since Fa(y, y)+Fb(y, y) =
f ′(y), this shows that the limit function satisfies pt+f

′(y)px = 0 in D′(S). By Lemma
2.14 and p(T, ·) = pT , p is thus the unique reversible solution on S.

The convergence p∆ → p is uniform on S2δ. In fact, p is Lipschitz coninuous
on Sδ and p∆ → p in B([0, T ];L1

loc(Ω)). Moreover, since p∆ is bounded and p∆(t, ·)
is monotone increasing and therefore satisfies a discrete OSLC, we can apply the
interpolation result (3.38) with p, p∆ instead of y, y∆ (it is easy to check that the C1

requirement can be weakened to C0,1). Hence, p∆ → p in B(S2δ) for all δ > 0.
4.2) We show now that p is constant on Dk \ (D−)cl. Consider first Dk such that

ξ±k both intersect the line {t = 0}. Then Dk = Dk \ (D−)cl. For ε0 > 0 small enough
all backward characteristics ξ(·;T, x̄k ∓ ε), 0 < ε ≤ ε0, are genuine and travel in S.
Since p is the reversible solution on S, we have

p(t, ζ(t;T, x̄k ∓ ε)) = pT (x̄k ∓ ε).

We find δ(ε) ∈]0, ε[ with (t, ξ(t;T, x̄k ∓ ε)) ∈ Sδ(ε) for all t ∈ [δ(ε), T ]. By 4.1)
∥(p∆ − p)(·, ξ(·;T, x̄k ∓ ε))∥B([δ(ε),T ]) → 0. The monotonicity of p∆(t, ·) yields

pT (x̄k − ε)− ∥(p∆ − p)(·, ξ(·;T, x̄k − ε))∥B([δ(ε),T ]) ≤ p∆(t, ξ(t;T, x̄k − ε)) ≤ p∆(t, x)

≤ p∆(t, ξ(t;T, x̄k + ε)) ≤ pT (x̄k + ε) + ∥(p∆ − p)(·, ξ(·;T, x̄k + ε))∥B([δ(ε),T ])
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for all (t, x) ∈ Dk with t ≥ δ(ε). Now ∆ → 0 and then ε → 0 shows that p∆(t, x) →
pT (x̄k) for all (t, x) ∈ Dk with t > 0. By the equicontinuity of p∆ in time we conclude
that this extends to t = 0 except possibly to the boundary points ξ±k (0), if these are
rarefaction centers. By using (3.38) and the monotonicity of p∆ we conclude that
p∆(0, ·) → pT (x̄k) in B([ξ−k + δ, ξ+k − δ]) for all δ > 0.

Now considerDk, where ξ
−
k intersects the boundary in a point (s−k , 0) with s

−
k > 0.

Moreover, let 0 ≤ s+k < s−k be the time at which ξ+k intersects the boundary.
Set s1 := s−k . Then we can argue exactly as before with t ∈]s1, T [ instead of

t ∈]0, T [ to show that p∆(t, x) → pT (x̄k) for all (t, x) ∈ Dk with t > s1 and also
for t = s1 except possibly the point (s−k , 0) if it is a rarefaction center. Moreover,
p∆(s1, ·) → pT (x̄k) in B([δ, ξ+k (s1)− δ]) for all δ > 0.

Since the minimal characteristic ξ−k is genuine, (s1, 0) is a continuity point of uB
or the center of a rarefaction wave generated by uB . Now by assumption uB is C1

on an interval ]s2, s1[, where s2 = s+k or s2 > s+k and (s2, 0) is a rarefaction center
or a shock point. Since u′B is uniformly bounded in the smooth regions, we find a
fixed ρ = ρ(uB) > 0 only depending on uB such that for s1,1 := max{s2, s1 − ρ} all
forward characteristics ξ(·; s, 0), s ∈]s1,1, s−k [ are classical up to a time t > s1 = s−k
and cover the region G := {(t, x) : t ∈]s1,1, s1], 0 ≤ x ≤ ζ(t; s1,1, 0)}. Thus, y is a
classical C1-solution on G and we can argue as for S in 4.1) that y∆ → y uniformly
on any subset Gδ := {(t, x) : t ∈]s1,1, s1], δ ≤ x ≤ ξ(t; s1,1, 0) − δ}, δ > 0. Moreover,
p∆(s1, ·) → pT (x̄k) in B([δ, ξ+k − δ]) for all δ > 0. Hence, again as for S in 4.1) we
obtain that the limit p of p∆ is the unique classical solution of the adjoint equation on
any Gδ with p(s1, ·) = pT (x̄k) on {x : (s1, x) ∈ Gδ}, which is given by p|Gδ

≡ pT (x̄k).
Moreover, the convergence is uniform on G2δ.

Using now the uniform convergence to pT (x̄k) on G2δ and on S2δ we obtain with
the monotonicity of p∆ also the uniform convergence p∆(t, x) → p(t, x) = pT (x̄k) for
all (t, x) ∈ Dk with t > s1,1 + δ and x > δ. Thus, δ → 0 yields p(t, x) = pT (x̄k) for
all (t, x) ∈ Dk with t ≥ s1,1 (where we use the equicontinuity in time) and x > 0.
Moreover, p∆(s1,1, ·) → pT (x̄k) in B([δ, ξ+k (s1,1)− δ]) for all δ > 0.

Since ρ depends only on uB , we can repeat the argument with s1,1 instead of s1
and s1,2 := max{s2, s1,1 − ρ} finitely many times until we reach s1,l = s2 and have
thus shown that p∆(t, x) → p(t, x) = pT (x̄k) uniformly for all (t, x) ∈ Dk with t ≥ s2
and x > δ. If s2 = s+k , we are done. Otherwise, (s2, 0) is a rarefaction center or a
shock point.

If f ′(y(s2−, 0+)) > 0, then the flow remains incoming and by assumption uB is
C1 on an interval ]s3, s2[, where s3 = s+k or s3 > s+k and (s3, 0) is a rarefaction center
or a shock point. We can now proceed exactly as before on ]s3, s2[ instead of ]s2, s1[
to show that p∆(t, x) → p(t, x) = pT (x̄k) uniformly for all (t, x) ∈ Dk with t ≥ s3 and
x > δ.

Otherwise, s2 is a transition point θi. Let ξi be the maximal backward char-
acteristic through starting at (s2, 0). Then ξi ends in a return point (ϑi, 0) with
0 < ϑi < s+k or reaches t = 0, i.e., ϑi = s+k = 0. Set s3 := ϑi. Let ηi denote the shock
emanating from (θi, 0). By Remark 2.6 the non-degeneracy condition of transition
points according to Definition 2.5(iii) we can construct a stripe Si ⊂ ΩT around ξi of
the form (2.4) such that there exists a function Y ∈ C1

b (Si) that coincides with y on

Ŝi := {(t, x) ∈ Si : t > s3, t < s2 or t ≥ s2 and x ≥ ηi(t)}. Ŝi is covered by genuine
characteristics.

For all 0 < δ < ε/2 we have Gδ := {(t, x) : t ∈]ϑi + δ, θi + ε − δ[, x ∈ [ξ(t; θi +
δ, 0), ξ(t; θi+ ε− δ, 0)]} ⊂ Ŝi. Since y is C1 on Ŝi and we know already that p(s2, ·) =
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pT (x̄k) on ]0, ξ(s2; θi + ε, 0)[, we can argue as above that p∆ → pT (x̄k) uniformly on
G2δ. Using also the uniform convergence on S2δ we obtain with the monotonicity
of p∆ as above also the uniform convergence p∆(t, x) → p(t, x) = pT (x̄k) for all
(t, x) ∈ Dk with t > s3 + δ and x > δ. Thus, δ → 0 yields p(t, x) = pT (x̄k) for
all (t, x) ∈ Dk with t ≥ s3 (where we use the equicontinuity in time) and x > 0.
Moreover, p∆(s3, ·) → pT (x̄k) in B([δ, ξ+k (s3)− δ]) for all δ > 0.

Now with s3 instead of s2 we can continue with the above cases finitely many times
until we reach the time s+k . We have thus shown that p∆(t, x) → p(t, x) = pT (x̄k)
for all (t, x) ∈ Dk with t > s+k + δ and x > δ. In addition, p(t, x) = pT (x̄k) for
all (t, x) ∈ Dk with t ≥ s+k (where we use the equicontinuity in time) and x > 0.
Moreover, p∆(s

+
k , ·) → pT (x̄k) in B([δ, ξ+k (s

+
k )− δ]) for all δ > 0

4.3) Finally, we show that p ≡ pB on D−. Let as above θi be a transition point,
ξi be the maximal backward characteristic starting at (θi, 0). Then ξi ends in a
return point (ϑi, 0) with ϑi > 0 or reaches t = 0, i.e., ϑi = 0. Let ηi denote the shock
emanating from (θi, 0). By Remark 2.6 the non-degeneracy condition yields as above a
stripe Si ⊂ ΩT around ξi of the form (2.4) such that there exists a function Y ∈ C1

b (Si)

that coincides with y on Ŝi := {(t, x) ∈ Si : t ≥ ϑi, t < θi or t ≥ θ1 and x ≥ ηi(t)}.
For all 0 < δ < ε/2 we have Gδ := {(t, x) : t ∈]ϑi + δ, θi − δ[, x ∈ [ξ(t; θi − ε +

δ, 0), ξ(t; θi−δ, 0)]} ⊂ Ŝi. Since y is C1 on Ŝi, we obtain as above uniform convergence
of y∆ → y on G2δ. Moreover, we know by Step 3 that p∆ → pB uniformly on
[θi − ε+ δ, θi − δ]×]0, ρ[ for ρ > 0 small enough, since this is contained in a set of the
form (3.35). Hence, we can argue as above that p∆ → pB uniformly on G2δ. Since also
p∆(t, 0) = pB , the monotonicity of p∆ yields as before also the uniform convergence
p∆(t, x) → pB on {(t, x) : t ∈]ϑi +2δ, θi − 2δ[, x ∈ [0, ξ(t; θi − 2δ, 0)]}. Since for δ → 0
the set D− can be exhausted by these sets, we obtain that p = pB on D−.

Hence, we have shown that p is the reversible solution on S, is constant on all
Dk \ (D−)cl, continuous on ΩT \ (D−)cl, p ≡ pB on D−, and p(T, ·) = pT . Moreover,
px ≥ 0. Hence, p is a locally Lipschitz continuous solution on ΩT \ (D−)cl, px ≥ 0 and
p ≡ pB on D−. Therefore, p is the unique reversible solution of (1.8) by Proposition
2.12. The convergence of the whole sequence p∆ → p follows by a subsequence-
subsequence argument.

The uniform convergence on all bounded sets that have a positive distance from
rarefaction centers, the boundary of D− and of the boundary {x = 0} follows from
the fact that the reversible solution p is locally Lipschitz continuous there, p∆ → p
in B([0, T ];L1

loc(Ω)), the monotonicity of p∆ and the interpolation inequality (3.38)
applied to p, p∆.

Step 5: Uniform convergence up to interior of inflow boundaries. It remains to
show the uniform convergence up to {x = 0} on sets with a positive distance from
rarefaction centers, D− and shock points of {x = 0}.

Let [τ1, τ2] ⊂]0, T [ with f ′(y(·, 0+)) > 0 on [τ1, τ2] be arbitrary such that [τ1, τ2]×
{0} has distance κ > 0 from D−, from rarefaction centers and from shocks. Then
(1.3) implies y(·, 0+) = uB on [τ1, τ2]. By continuity we find 0 < ε < κ such that
the same holds for [τ1 − ε, τ2 + ε]. Since uB is C1 on [τ1 − ε, τ2 + ε], we find ρ > 0
such that the characteristics emanating from [τ1 − ε, τ2 + ε] × {0} cover the region
G := [τ1, τ2 + ε]× [0, ρ] and are classical there. Hence y is C1 on G.

Now let ỹ be the extension of y to [τ1, τ2 + ε] × R by setting ỹ(t, x) = uB(t) =
y(t, 0+) for x < 0 and analogously ỹ∆ be the extension of y∆ by ỹ∆(t, x) = uB,∆(t) =

y∆(t, 0) for x < 0. Then ỹ is in C0,1
b ([τ1, τ2 + ε]×]−∞, ρ]) and C1 outside of the line

x = 0. Moreover, ỹ∆ inherits the discrete OSLC on [τ1, τ2 + ε]×] − ∞, ρ] from the
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OSLC of y∆ guaranteed by Lemma 3.5 with τ0 = τ1 − κ. Moreover, the convergence
y∆ → y in B([0, T ];L1

loc(Ω)) implies also that ỹ∆ → ỹ in B([0, T ];L1
loc(R)). Now the

interpolation inequality [28, Lemma 2.1], see (3.38), yields ỹ∆ → ỹ in B([τ1, τ2 + ε]×
[−ρ/2, ρ/2]). Since, f ′(y) ≥ β/2 > 0 on [τ1, τ2+ ε]× [0, ρ/2] after a possible reduction
of ρ > 0, for ∆0 > 0 small enough, we obtain f ′(y∆) ≥ β/4 > 0 on [τ1, τ2+ε]× [0, ρ/2]
for all 0 < ∆ ≤ ∆0. Hence, the adjoint scheme (3.36) of the modified Engquist-Osher
scheme has for tn ∈ [τ1, τ2 + ε−∆t] and j = 1 the form

pn1 = pn+1
1 + λf ′(yn+1

1 )(pn+1
2 − pn+1

1 ).

and consequently the computation of p∆ on [τ1, τ2 + ε−∆t]× [∆x,∞[ depends only
on p∆(τ2+ε, x), x ≥ ∆x. Hence, if we set p̃∆(τ2+ε, x) = p∆(τ2+ε, x) for x ≥ −∆x/2
and p̃∆(τ2 + ε, x) = pB for x < −∆x/2 and determine p̃∆ on [τ1, τ2 + ε−∆t]× R by
applying (3.36) with the state ỹ∆ then we have p̃∆ = p∆ on [τ1, τ2+ε−∆t]× [∆x,∞[.

Now p̃∆(τ2 + ε, ·) → p(τ2 + ε, ·)1{x>0} + pB1{x≤0} =: p̃τ2+ε and the unique
corresponding reversible solution p̄ is for t ∈ [τ1, τ2 + ε] given by

p̄(t, x) = p(t, x), x > 0,

p̄(t, f ′(uB(s))(t− s)) = p(s, 0+), t ≤ s < τ2 + ε,

p̄(t, x) = pB , x ≤ f ′(uB(τ2 + ε))(t− τ2 − ε),

and is obviously Lipschitz on {(t, x) : t ∈ [τ1, τ2+ ε], f ′(uB(τ2+ ε))(t− τ2− ε) < x ≤
ρ} ⊃ [τ1, τ2 + ε/2]× [−ρ̃, ρ] for 0 < ρ̃ ≤ ρ small enough.

Exactly as in Step 1, BV bound and equicontinuity in time yield for a subsequence
∆k → 0 that p̃∆k

→ p̃ in B([τ1, τ2+ε];L
1
loc(R)) and clearly p̃ = p on [τ1, τ2+ε]×Ω. As

already observed, y is piecewise C1 and Lipschitz on [τ1, τ2 + ε]× [−ρ, ρ] and y∆ → y
uniformly on [τ1, τ2 + ε] × [−ρ/2, ρ/2] (on x < 0 this is trivial, since uB,∆ → uB
uniformly). Hence, as in 4.1) above we obtain that p̃ is a distributional solution of
the adjoint equation on [τ1, τ2 + ε]× [−ρ/2, ρ/2] and coincides on [τ1, τ2 + ε]× [0, ρ/2]
with the unique reversible solution p. By an obvious variant of Lemma 2.14 with end
and boundary data we obtain that p̃ = p̄ on [τ1, τ2 + ε/2]× [−ρ̃/2, ρ/2]. Thus, p̃ = p̄
is Lipschitz on this set. By a subsequence-subsequence argument we obtain p̃∆ → p̃
in B([τ1, τ2 + ε/2];L1(−ρ̃/2, ρ/2)) for ∆ → 0.

Since p̃ = p̄ is Lipschitz on [τ1, τ2 + ε/2] × [−ρ̃/2, ρ/2], we can apply (3.38) with
p̃, p̃∆ instead of y, y∆ and obtain p̃∆ → p̃ in B([τ1, τ2 + ε/2] × [−ρ̃/4, ρ/4]) and thus
p∆ → p in B([τ1, τ2 + ε/2]× [∆x, ρ/4]). This completes the proof.

Theorem 3.12 ensures the convergence of the discrete adjoint-based gradient for
a smoothed version of the objective (1.4). For δ > 0 and φδ ∈ C1

c ((−δ, δ)) consider

Jδ(y(u)) =

∫
I

γ(x)ψ((φδ ∗x y)(T, x), (φδ ∗x yd)(x)) dx.(3.39)

The adjoint formula for duJ
δ(y(u)) · δu and its discretization du∆J

δ
∆(y∆(u∆)) · δu∆

are given by (1.7) and (3.26) with pB = 0 and end data pT = γψy,δ ∈ C∞
c (Ω), where

ψy,δ(x) :=

∫
I

φδ(z − x)ψy((φδ ∗x y)(T, z), (φδ ∗x yd)(z)) dz

and its discrete counterpart pT∆ = γ∆ψ
∆
y,δ := T∆γψy,δ, respectively.

Lemma 3.13. With the assumptions of Theorem 3.12 let δ > 0 be arbitrary. As-
sume that no rarefaction center of the initial data u0 and no rarefaction center or
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shock point of the boundary data uB is shifted. Let the discrete adjoint state p∆ be
computed by (3.24) using the mEO-scheme (3.11) for end data pT∆ = γ∆ψ

∆
y,δ and

zero boundary data pB = 0. Then the discrete gradient adjoint representation of
du∆

Jδ∆(y∆(u∆)) · δu∆ converges to the gradient duJ
δ(y(u)) · δu of the smoothed objec-

tive (3.39).

Proof. We have to take the limit of

du∆
Jδ∆(y∆(u∆)) · δu∆ =

∫
Ω

p∆(0, x)δu0,∆(x) dx

+

∫ T−∆t

0

p∆(t+∆t,∆x)Fa(uB,∆(t), y∆(t,∆x))δuB,∆(t) dt

(3.40)

where p∆ is determined by (3.24) based on the mEO-scheme for end data pT∆ = γ∆ψ
∆
y,δ.

By the non-degeneracy assumption u0 has no shocks or rarefaction centers in a small
neighborhood of D−∩{t = 0}, thus by Theorem 3.12, the first term on the right hand
side in (3.40) has the correct limit. As we use the mEO-scheme the last term on the
right hand side in (3.40) is equal to∫ T−∆t

0

p∆(t+∆t,∆x)1{t : f(uB,∆(t))≥f(min{y∆(t,∆x),σ})}f
′(uB,∆)+δuB,∆ dt.

By Lemma 3.7 the last term on the right hand side in (3.40) becomes∫ T−∆t

0

p∆(t+∆t,∆x)1{t : f ′(y∆(t,∆x))>0}f
′(uB,∆)δuB,∆ dt.

As no shocks or rarefaction centers are shifted, the sensitivity δuB does not include
Dirac-measures and it holds δuB,∆ → δuB in L1(0, T ). Moreover, using the same
arguments as in Lemma 3.6 gives 1{t : f ′(y∆(t,∆x))>0} → 1{t : f ′(y(t,0+))>0} pointwise
on ]0, T [. Now Lebesgue’s dominated convergence theorem yields

∥1{t : f ′(y∆(t,∆x))>0} − 1{t : f ′(y(t,0+))>0}∥Lq(R) → 0 for all q ∈ [1,∞[ as ∆ → 0.

Together with Theorem 3.12 the last term on the right hand side in (3.40) has the
correct limit which finishes the proof.

Remark 3.14. 1. One can extend Lemma 3.13 such that shock positions can
be shifted by smoothing uB suitably in a κ-neighborhood of shock points and
by using the resulting state y∆,κ in the adjoint scheme. Setting κ = κ(∆) =
∆q for some 0 < q < 1/2 one can take the limit ∆ → 0 in (3.40), see [1].

2. Theorem 3.12 and Lemma 3.13 do not require that the state y∆ is generated
by the scheme to which the adjoint scheme belongs. y∆ has only to ensure
(3.7), (3.8), (3.10), (3.14) and the assertions of Lemma 3.7. Hence, also an
optimize-then-discretize approach is covered.

3. Using the post-processing method for the discontinuous end data pT from
[25], Lemma 3.13 can be applied to the original gradient duJ(y(u)) · δu.

4. Numerical example. As an illustrating example consider on (0, 2)× (0, 1)

yt + (y2/2)x = 0, y(0, x) = −1, uB,0(t) =

{
1
2 t ∈ [0, 12 ] ∪ ( 75 , 2]

2 (12 ,
7
5 ]

, uB,1(t) = −1,
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where uB,0 and uB,1 are boundary data at x = 0 and x = 1 in the sense of [3].
The boundary data generate a shock at ( 12 , 0) with speed 1

2 and a rarefaction wave
at ( 75 , 0), which start to interact at ( 75 ,

3
5 ). The corresponding adjoint state, i.e., the

reversible solution of (1.8), can be computed analytically. We choose T = 2 and

Fig. 1. p(·, 0) (red) and p∆(·, 0) (blue) for ∆x = 10−2 (left) and ∆x = 10−3 (right).

pT (x) = x corresponding to J(y) =
∫ 1

0
xy(2, x) dx, set λ = ∆t

∆x = 1
2 and apply the

modified Engquist-Osher scheme (3.11) to compute y∆ and its discrete adjoint scheme
(3.24), (3.25) to compute the discrete adjoint state p∆. Figure 1 shows the exact
adjoint state p(·, 0) at the left boundary in red (the gradient of J(y(u)) with respect
to uB,0), and the discrete adjoint p∆(·, 0) in blue (discrete gradient) for ∆x = 10−2

and ∆x = 10−3, respectively. As shown in Theorem 3.12, the convergence is uniform
ouside of any neighborhood of the two discontinuities located at the boundary of the
ouflow domain D− (t = 1

2 ) and at the center of the rarefaction wave (t = 7/5).
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Supplementary material for the paper

Convergence of numerical adjoint schemes arising from optimal boundary
control problems of hyperbolic conservation laws

by P. Schäfer Aguilar and S. Ulbrich

Proof of Lemma 3.2, Theorem 3.3 and Lemma 3.5.

Proof of Lemma 3.2. The first assertion holds by [7, Lemma 3.1] and (3.6).
To show (ii), set v̄nj = vnj , w̄

n
j = wnj for j ≥ 0 and v̄nj = w̄nj = 0 for j < 0.

Then we have by [9] with the scheme (3.5) ∥H(v̄n∆) −H(w̄n∆)∥1,R ≤ ∥v̄n∆ − w̄n∆∥1,R =
∥vn∆ −wn∆∥1,[−∆x/2,∞[. We obtain with (3.6) ∥HB(v

n
∆)−HB(w

n
∆)∥1,[∆x/2,∞[ ≤ ∥vn∆ −

wn∆∥1,[−∆x/2,∞[ and it follows

∥HB(v
n
∆)−HB(w

n
∆)∥1,[−∆x/2,∞[ ≤ ∥vn∆ − wn∆∥1,[−∆x/2,∞[ +∆x|vn+1

0 − wn+1
0 |.

Now, set vnj = vnB for j < 0 and denote by ṽn+1
j the corresponding grid values

obtained by the scheme (3.5). Then ṽn+1
j = vn+1

j for j ≥ 1, ṽn+1
j = vnB for j ≤ −1

and by (i) the resulting scheme is monotone. To verify (iii) set wn∆ = vn∆(· + ∆x),
then by using again ∥H(vn∆)−H(wn∆)∥1,R ≤ ∥vn∆ − wn∆∥1,R, see [9], we deduce

∥ṽn+1
∆ ∥TV,]∆x/2,∞[ + |vn+1

1 − ṽn+1
0 |+ |ṽn+1

0 − vnB | ≤ ∥vn∆∥TV

and using the triangle inequality we obtain

∥vn+1
∆ ∥TV = ∥ṽn+1

∆ ∥TV,]∆x/2,∞[ + |vn+1
1 − vn+1

B |
≤ ∥vn∆∥TV − |vn+1

1 − ṽn+1
0 | − |ṽn+1

0 − vnB |+ |vn+1
1 − vn+1

B |
≤ ∥vn∆∥TV − |vn+1

1 − vnB |+ |vn+1
1 − vn+1

B | ≤ ∥vn∆∥TV + |vn+1
B − vnB |.

Proof of Theorem 3.3. First assume that u0 ∈ BVloc(Ω) and uB ∈ BV (0, T ).
Lemma 3.2 yields ynj ∈ [l − T∥g∥∞, r + T∥g∥∞] and yn∆ ∈ BVloc(Ω), since g ∈
L1(0, T ;BV (Ω)). We extend the boundary data and source by ynj = yn0 , G

n
j = 0

for j < 0 and apply the operator H(yn∆)+∆tgn∆ with H in (3.5). For monotone fluxes
with Lipschitz constant LF it is known that ∥H(yn∆) − yn∆∥1 ≤ 3∆tLF ∥yn∆∥BV , see
e.g. [9, Prop. 3.5]. We have yn+1

j = (H(yn∆) +∆tgn∆)j for j ≥ 1 and H(yn∆)j − ynj = 0

for j ≤ −1. Hence, we obtain ∥yn+1
∆ − yn∆∥1,[−∆x/2,∞[ ≤ 3∆tLF ∥yn∆∥BV +∆t|un+1

B −
unB |+∆t∥gn∆∥1. Since yn∆ are uniformly bounded in BVloc and by using the equicon-
tinuity in time, there is a subsequence converging in L∞(0, T ;L1

loc(Ω)) to a function
y ∈ L∞(0, T ;BVloc(Ω))∩C([0, T ];L1

loc(Ω)). We still have to show that y is an entropy
solution of (1.1). For monotone fluxes the discrete entropy inequality holds

Uk(y
n+1
j ) ≤ Uk(y

n
j )−

∆t

∆x
∆+Qk(y

n
j−1, y

n
j ) + ∆tU ′

k(y
n+1
j )Gnj(4.1)

with Uk(u) = |u − k|, Qk(u, v) = F ([u, k]+, [v, k]+) − F ([u, k]−, [v, k]−), U
′
k(u) =

sgn(u− k), for any k ∈ R and [α, β]+ := max{α, β} and [α, β]− := min{α, β}. In fact,
since H is monotone increasing w.r.t. all arguments and k = H(k, k, k), we thus have

[yn+1
j , k]+ ≤ H([ynj−1, k]+, [y

n
j , k]+, [y

n
j+1, k]+) + ∆t1{yn+1

j >k}G
n
j ,

[yn+1
j , k]− ≥ H([ynj−1, k]−, [y

n
j , k]−, [y

n
j+1, k]−) + ∆t1{yn+1

j <k}G
n
j .

1



Taking the difference yields the discrete entropy inequality (4.1). Let ϕnj ≥ 0 be grid

values of a test function ϕ ∈ C1
c ([0, T [×[0,∞[), ϕ ≥ 0. We obtain∑

j≥1,n≥0

ϕnj∆x
(
Uk(y

n+1
j )− Uk(y

n
j )−∆tU ′

k(y
n+1
j )Gnj + λ∆+Qk(y

n
j−1, y

n
j )
)
≤ 0

and summation by parts yields∑
j≥1,n≥0

∆x
(
Uk(y

n+1
j )(ϕnj − ϕn+1

j )− λ∆+ϕnjQk(y
n
j , y

n
j+1)−∆tϕnj U

′
k(y

n+1
j )Gnj

)
−
∑
j≥1

∆xUk(y
0
j )ϕ

0
j −

∑
n≥0

∆tQk(u
n
B , y

n
1 )ϕ

n
1 ≤ 0.

(4.2)

Doing the same for the original scheme instead of the discrete entropy inequality yields

∑
j≥1,n≥0

∆x
(
yn+1
j (ϕnj − ϕn+1

j )− λ∆+ϕnj F (y
n
j , y

n
j+1)−∆tϕnjG

n
j

)
−
∑
j≥1

∆xy0jϕ
0
j −

∑
n≥0

∆tF (unB , y
n
1 )ϕ

n
1 = 0.

(4.3)

Now yn0 = unB and with ū = yn0 − ∆t
∆x (F (y

n
0 , y

n
1 )− F (yn0 , y

n
0 )) we obtain as above

Uk(ū) ≤ Uk(y
n
0 )−

∆t

∆x
(Qk(y

n
0 , y

n
1 )−Qk(y

n
0 , y

n
0 ))

and by the convexity of Uk (note that sgn(u− k) ∈ ∂Uk(u))

Uk(ū) ≥ Uk(y
n
0 )−

∆t

∆x
sgn(yn0 − k)(F (yn0 , y

n
1 )− F (yn0 , y

n
0 )).

By combining the last two inequalities, we obtain

Qk(y
n
0 , y

n
1 )−Qk(y

n
0 , y

n
0 )− sgn(yn0 − k)(F (yn0 , y

n
1 )− F (yn0 , y

n
0 )) ≤ 0.

Inserting this in (4.2) yields with F (yn0 , y
n
0 ) = f(yn0 )

∑
j≥1,n≥0

∆x
(
Uk(y

n+1
j )(ϕnj − ϕn+1

j )− λ∆+ϕnjQk(y
n
j , y

n
j+1)−∆tϕnj U

′
k(y

n+1
j )Gnj

)
−
∑
j≥1

∆xUk(y
0
j )ϕ

0
j −

∑
n≥0

∆t (Qk(y
n
0 , y

n
0 ) + sgn(yn0 − k)(F (yn0 , y

n
1 )− f(yn0 )))ϕ

n
1 ≤ 0.

(4.4)

Taking test functions max{0, 1 − x/δ}ϕ(t) with ϕ ∈ C1
c (]0, T [), ϕ ≥ 0 in (4.3) yields

for ∆x = ∆t/λ→ 0 and δ ↘ 0∫
[0,T [

f(y(t, 0+))ϕ(t) dt = lim
∆x→0

∫
[0,T [

F (uB,∆(t), y∆(t,∆x))ϕ(t) dt.

Which verifies the first statement (3.9). By continuity this also holds for test functions
ϕ ∈ L1(0, T ). Inserting this in (4.4) with the same test functions such that for all k

2



the set {uB = k} has measure 0 yields∫
[0,T [

(sgn(y(t, 0+)− k)(f(y(t, 0+))− f(k))− sgn(uB(t)− k)(f(uB(t))− f(k)))

− sgn(uB(t)− k)(f(y(t, 0+))− f(uB(t)))ϕ(t) dt ≤ 0,

and thus∫
[0,T [

(sgn(y(t, 0+)− k) + sgn(k − uB(t)))(f(y(t, 0+))− f(k))ϕ(t) dt ≤ 0.(4.5)

This is equivalent to

min
k∈I(y(t,0+),uB(t))

sgn(k − y(t, 0+))(f(y(t, 0+))− f(k)) = 0,

thus the limit function satisfies the boundary condition in the BLN sense. Now, let
ϕ ∈ C1

c ([0, T [×[0,∞[), ϕ ≥ 0 be arbitrary. Using test functions min{1, x/δ}ϕ(t, x) in
(4.2) the limit ∆x = ∆t/λ→ 0 and δ ↘ 0 results in∫

ΩT

(−|y − k|ϕt − sgn(y − k)(f(y)− f(k))ϕx − ϕ sgn(y − k)g) dxdt

−
∫
Ω

sgn(y(t, 0+)− k)(f(y(t, 0+))− f(k))ϕ(t, 0) dt−
∫
Ω

|u0(x)− k|ϕ(0, x) dx ≤ 0.

Including (4.5) yields the weak formulation of the entropy inequality∫
ΩT

(−|y − k|ϕt − sgn(y − k)(f(y)− f(k))ϕx − ϕ sgn(y − k)g) dx dt

−
∫
Ω

sgn(uB(t)− k)(f(y(t, 0+))− f(k))ϕ(t, 0) dt−
∫
Ω

|u0(x)− k|ϕ(0, x) dx ≤ 0

see also [3, 20]. The limit limt↘0 ∥y(t, ·)−u0∥L1
loc(Ω) = 0 follows from the equicontinu-

ity in time and u0,∆ → u0 in L
1
loc(Ω). Consequently the limit function y is the entropy

solution of (1.1). By a subsequence-subsequence argument the convergence holds for
the whole sequence ∆. Using an approximation argument as in [9] the same holds for
controls in u ∈ (L1 ∩ L∞)(Ω)× (L1 ∩ L∞)(0, T ) without the additional BV-bound.

Proof of Lemma 3.5. In [29] the assertion was proved for Cauchy problems, see
also [27]. We proceed similarly, but take the boundary data into account. Let without

restriction τ0 = 0. Define ℓnj :=
ynj+1−y

n
j

∆x . We analyze first ℓn0 , n = 1, . . . , NT , i.e., the
behavior at the boundary. By assumption, f ′(uB) ≥ f ′(γ) = β > 0 on [0, T ] holds for
some γ > σ, hence we have yn0 > σ for all n = 1, . . . , NT . Moreover, g = 0 for x ≤ εg
and thus Gn1 = 0. We have to distinguish the following cases:

Case 1: yn1 ≥ σ, yn2 ≥ σ. The mEO-scheme reads yn+1
1 = yn1 − λ(f(yn1 )− f(yn0 )),

which yields yn+1
1 − yn+1

0 = yn0 − yn+1
0 + yn1 − yn0 − λ(f(yn1 ) − f(yn0 )). Now, since

f ′′ ≥ mf ′′ > 0 holds, we obtain

f(yn1 )−f(yn0 ) ≥ f ′(yn0 )(y
n
1 − yn0 ) +

mf ′′

2
(yn1 − yn0 )

2.

3



Hence,

yn+1
1 − yn+1

0 ≤ yn0 − yn+1
0 + (yn1 − yn0 )

(
1− λf ′(yn0 )−

λmf ′′

2
(yn1 − yn0 )

)
≤ yn0 − yn+1

0 + (yn1 − yn0 )+(1− λf ′(yn0 )).

Thus, we have

yn+1
1 − yn+1

0 ≤ yn0 − yn+1
0 + (yn1 − yn0 )+(1− λf ′(γ)).

Case 2: yn1 ≥ σ, yn2 < σ. Then the mEO-scheme reads yn+1
1 = yn1 − λ(f(yn1 ) +

f(yn2 )− f(σ)− f(yn0 )). This yields

yn+1
1 − yn+1

0 ≤ yn0 − yn+1
0 + yn1 − yn0 − λ(f(yn1 )− f(yn0 ))

and we can proceed as in Case 1.
Case 3: yn1 < σ, yn2 ≥ σ. The mEO-scheme is given by yn+1

1 = yn1 − λ(f(σ) −
max{f(yn0 ), f(yn1 )}) and we obtain

yn+1
1 − yn+1

0 = yn0 − yn+1
0 + yn1 − yn0 − λ(f(σ)−max{f(yn0 ), f(yn1 )}).

The grid points ynj are bounded, so f has a Lipschitz constant Lf . Therefore

−λ(f(σ)−max{f(yn0 ), f(yn1 )} ≤ λLf max{yn0 − σ, σ − yn1 } ≤ λLf (y
n
0 − yn1 ).

Hence, under the CFL-condition λLf ≤ 1 it holds

yn+1
1 − yn+1

0 ≤ yn0 − yn+1
0 + (yn0 − yn1 )(−1 + λLf ) ≤ yn0 − yn+1

0 .

Case 4: yn1 < σ, yn2 < σ. The mEO-scheme reads yn+1
1 = yn1 − λ(f(yn2 ) −

max{f(yn0 ), f(yn1 )}). This yields

yn+1
1 − yn+1

0 ≤ yn0 − yn+1
0 + yn1 − yn0 − λ(f(σ)−max{f(yn0 ), f(yn1 )})

and we proceed as in Case 3. Altogether, we obtain

yn+1
1 − yn+1

0 ≤ yn0 − yn+1
0 + (yn1 − yn0 )+(1− λf ′(γ)).(4.6)

Let C̃0 = max{0, y
0
1−y

0
0

∆x }. Since the boundary data generate by assumption no rarefac-

tion centers, we find a constant CB ≥ 0 with λ
yn0 −yn+1

0

∆t ≤ CB for n = 0, . . . , NT − 1.

We define a sequence an by an+1 ≤ CB+man with a0 ≤ C̃0 andm = 1−λf ′(γ) ∈ ]0, 1[.

This yields an ≤ mnC̃0 + CB
∑n−1
i=0 m

i ≤ mnC̃0 +
CB

1−m and with (4.6) we deduce

ℓn0 ≤ mnC̃0 +
CB

1−m
=: Cn, n = 0, . . . , NT .(4.7)

Let Lg ≥ 0 be the Lipschitz constant of g with respect to x. By extending results
of [29, Lem. 6.5.2] for the EO-scheme to the mEO-scheme, see below, we obtain with
some ν > 0 for all 0 < c ≤ ν the estimate

ℓn+1
j ≤ ℓn,+j,1 −∆tc(ℓn,+j,1 )2 +∆tLg, ℓn,+j,1 := max

k=−1,0,1
{(ℓnj+k)+}, j ≥ 1.(4.8)
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Set ψ(ℓ) := ℓ − ∆tcℓ2 + ∆tLg. We derive now an upper bound for ℓnj . We observe
that ℓnj ≤ 2My/∆x + CB/(1 −m) for j ≥ 0. We clearly find a maximal 0 < c ≤ ν
such that it holds for all 0 < ∆ ≤ ∆0

ψ′(ℓ) = 1− 2c∆tℓ ≥ m ∀ ℓ ∈
[
0,max{2My/∆x+ 2CB/(1−m),

√
Lg/c}

]
.(4.9)

The latter interval contains all ℓn,+j,1 , j ≥ 1 and all Cn and ψ has the unique fixed point

ℓ =
√
Lg/c on the interval. With (4.7), (4.8) we obtain ℓn+1

j ≤ max{Cn+1, ψ(ℓ
n,+
j,1 )}

for all j ≥ 0.
Define Mn := supj≥1 max{ℓnj , Cn}, then the monotonicity of ψ yields ℓn+1

j ≤
max{Cn+1, ψ(Mn)} and thus

Mn+1 ≤ max{Cn+1, ψ(Mn)}.(4.10)

Now define

M̄n+1 := max{C̃n+1, ψc̃(M̄n)}, M̄0 =M0

then the monotonicity of ψc̃ yields M̄n ≥Mn for all n ≥ 0. We consider two cases.
Case 1: M̄0 ≤

√
Lg/c. Then by (4.8) and the fact that

√
Lg/c is the unique fixed

point on the interval in (4.8), we have M̄0 ≤ ψ(M̄0) ≤
√
Lg/c and C1 ≤ C0 ≤ M̄0.

Hence, M̄1 = ψ(M̄0) and we obtain inductively M̄n+1 = ψ(M̄n), M̄n+1 ≤
√
Lg/c for

all n ≥ 0
Case 2: M̄0 >

√
Lg/c. Then we obtain similarly as in Case 1 that (M̄n) is a

decreasing sequence >
√
Lg/c. An elementary investigation of the quadratic function

ψ(Cn)− Cn+1 = Cn −∆tcC2
n +∆tLg −mCn − CB =: q(Cn)

yields that q(C) has a minimum at C̄ = (1 − m)/(2c∆t) with value q(C̄) = (1 −
m)2/(4c∆t) − CB + ∆tLg. Now (4.9) implies M̄n ≤ C̄, n ≥ 0, as well as q(C̄) ≥ 0.
Therefore, q has a unique zero at some some C∆ ∈ [(CB − ∆tLg)/(1 −m), 2(CB −
∆tLg)/(1−m)] and

ψ(Cn)− Cn+1

{
≥ 0 for Cn ∈ [C∆, (1−m)/(2c̃∆t)],

≤ 0 for Cn ≤ C∆,

Hence, we obtain M̄n+1 = ψ(M̄n) until the first n = n1 with M̄n1 < C∆, ψ(M̄n1) ≤
Cn1+1 and from that point on we obtain M̄n = Cn for n ≥ n1 + 1.

In other words, if we define the sequence M̃n+1 = ψ(M̃n), M̃0 = M0 we obtain
M̄n = max{M̃n, Cn}. To estimate M̃n we note that 1

∆t (M̃n+1 − M̃n) = −cM̃2
n. The

solution of the initial value problem α̇(t) = −cα(t)2, α(0) = M̃0 satisfies α(n∆t) ≥ M̃n

and is given by α(t) = (ct+1/M̃0)
−1. Hence, we can conclude M̄n = max{Cn, M̃n} ≤

max {Cn, α(tn)}. Finally, (4.9) implies easily that ψ(M̃n) ≥ mM̃n and thus M̃n ≥
mnC0 for n ≥ 0 leading to

M̄n ≤ CB
1−m

+
1

ctn + 1
M0

.

It remains to prove that the modified Engquist-Osher scheme satisfies (4.8) under
the assumed CFL condition. In [29, Lemma 6.5.2] it was shown that (4.8) holds for
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the Engquist-Osher scheme with ν = min{mf ′′/4,1/(4λMy)}. The mEO-scheme differs
only for j = 1 in the transonic case yn1 < σ < yn0 , where

FEO(yn0 , y
n
1 ) = f(yn1 ) + f(yn0 )− f(σ) ≥ max{f(yn1 ), f(yn0 )} = FG(yn0 , y

n
1 ).

Hence, we have (ℓn+1
1 )EO ≥ (ℓn+1

1 )mEO and thus [29, Lemma 6.5.2] holds with j = 1
also for the mEO scheme.
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