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SUMMARY

Subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial
meshes in the computation of nonstationary incompressible flows. The observed behavior is due to the
fact that discrete solenoidal fields lose this property under changes of the spatial discretization. This
phenomenon is analyzed for discontinuous Galerkin finite element discretizations in time and possible
ways are considered to circumvent this problem. Copyright c© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computational costs for the numerical solution of nonstationary flow problems are
comparatively high due to the complex structure of such problems, especially when dealing
with three-dimensional geometries. Thus, it is crucial to apply adaptive refinement techniques
to reduce the size of the approximative problem without reducing the accuracy of the
approximation. To be most efficient in capturing the dynamics of a nonstationary flow problem,
it is desirable to use so-called dynamic meshes for the discretization in space. That is, one uses
possibly different meshes at different time points. In this way, one can efficiently resolve and
track layers marching through the domain, for example. However, by doing so one will usually
obtain pressure approximations that diverge when the size of the time step is reduced. In
contrast, this behavior is not observed when one is concerned with the approximation of the
velocities.

To illustrate this defect, we consider the benchmark configuration “Laminar Flow Around
a Cylinder”, see, e. g., [1] or Section 3 for a precise description of the setting. Figure 1 shows
the temporal evolution of the lift-coefficient. These values were obtained using a spatial
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Figure 1: Temporal evolution of the lift-coefficient clift for the benchmark “Laminar
Flow Around a Cylinder” on an oscillating spatial mesh in time

discretization in which the mesh was changed every second time step in order to show the
potentially disastrous effects of this defect. We observe oscillations, especially in the right
picture which shows a closer look at the subinterval [3, 4]. It is clear that such a behavior is
undesirable if one is concerned with the determination of pressure dependent quantities. It is
even more so if refinement in time is stirred by temporal gradients of the pressure. This is
particularly due to the fact, that the oscillations are caused by overrefinement in time as we
will see in Section 4.

This behavior is striking, in particular as adaptive methods are widely used in the context of
finite element discretizations of partial differential equations, see, for example, [2] or [3] for an
overview. Applications to nonstationary incompressible flow problems can be found, e. g., in [4],
[5], or [6, 7]. However, while the usage of dynamically changing spatial meshes seems straight
forward in the context of Galerkin finite element discretizations, there are some pitfalls if one
is interested in the approximation of the pressure as mentioned before. The aim of this paper
is to describe and analyze this defect and to present a way to circumvent it. These results are
based on the PhD thesis of the first author, see [7].

In what follows, we consider nonstationary incompressible flows described by the Navier-
Stokes equations, given in the form

∂tv − ν∆v + (v · ∇)v +∇p = f in I ×Ω,

∇ · v = 0 in I ×Ω,

v(0) = v0 in Ω

(1.1)

with a time interval I = (0, T ), computational domain Ω ⊆ R
d, d ∈ { 2, 3 }, kinematic

viscosity ν, volume forces f , and initial values v0. These equations have to be supplemented by
appropriate boundary conditions. For sake of simplicity, we consider no-slip Dirichlet boundary
conditions.

The discretization of the nonstationary incompressible Navier-Stokes equations (1.1) is done
by means of space-time finite element methods. To do so, we state the variational formulation
of (1.1) which reads as follows: For given f ∈ L2(I,H−1(Ω)d) and v0 ∈ L2(Ω)d find
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u := (v, p)T ∈ X such that

∫

I

{
(∂tv,ψ) + ν(∇v,∇ψ) + ((v · ∇)v,ψ)− (p,∇ ·ψ) + (∇ · v, χ)

}
dt

+ (v(0)− v0,ψ(0)) =
∫

I

(f ,ψ) dt ∀ϕ := (ψ, χ)T ∈ X, (1.2)

where (·, ·) denotes the inner product on L2(Ω) (or L2(Ω)d) and the space X is given as

X :=
{
u = (v, p)T

∣∣∣ v ∈ L2(I,H1
0 (Ω)d), ∂tv ∈ L2(I,H−1(Ω)d), p ∈ L2(I, L2(Ω)/R)

}
.

For questions on existence and uniqueness of solutions, we refer to [8].
The rest of this paper is structured as follows. In Section 2, we start with the discretization

of the nonstationary Navier-Stokes equations. Then, in Section 3, we consider a well known
benchmark problem to illustrate the behavior of the pressure once the spatial discretization
is changed over time. That section concludes by stating a model problem that exhibits the
same behavior, thereby showing, that the defect is not caused by the nonlinearity or the time
dependent data in the benchmark configuration. In Section 4, we analyze the behavior both
numerically as well as analytically. Finally, in Section 5, we demonstrate how the problem can
be circumvented.

2. DISCRETIZATION

In this section, we describe the discretization of the weak formulation of the time-dependent
incompressible Navier-Stokes equations (1.2). The discretization in space as well as in time
will be done by means of Galerkin finite element methods.

2.1. Discretization in time

For the semi-discretization in time, we use discontinuous Galerkin (dG) methods. To this end,
we partition the time interval Ī = [0, T ] into

Ī = {0} ∪ I1 ∪ · · · ∪ Im ∪ · · · ∪ IM

with subintervals Im := (tm−1, tm] of length km := tm − tm−1 using time points

0 = t0 < t1 < · · · < tm < · · · < tM = T.

The discretization parameter k is given as a piecewise constant function by setting k
∣∣
Im

:= km
for m = 1, . . . ,M .

The dG(r) semi-discretization of the incompressible Navier-Stokes equations (1.2) then seeks
a solution uk = (vk, pk)

T which is piecewise polynomial of degree r on each subinterval Im.
For further details, we refer to [9] or [6, 7].

Remark 2.1. Due to the discontinuity of the test functions, the dG(r) discretizations decouple
into a sequence of time steps. For example, the dG(0) discretization is a variant of the backward
Euler method, while the dG(1) discretization, after applying quadrature rules to the temporal
integrals, corresponds to some implicit Runge-Kutta method.
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2.2. Discretization in space

For the discretization in space of the semi-discrete problems obtained in the previous
subsection, we use continuous Galerkin (cG) methods. To this end, we use two- or three-
dimensional shape-regular meshes, see, e. g., [10]. A mesh consists of open, non-overlapping
elements K, such that

⋃
K = Ω ⊆ R

d, d ∈ { 2, 3 }. The corresponding mesh is denoted by
Th = {K }, where the discretization parameter h is defined as a cellwise constant function
by setting h

∣∣
K

= hK = diam(K). On the mesh Th, we construct a conforming finite element

space V s
h ⊆ H1(Ω) in a standard way:

V s
h :=

{
v ∈ C(Ω)

∣∣∣ v
∣∣
K

∈ Qs(K) for K ∈ Th
}
,

where Qs(K) denotes the space of isoparametric finite elements of degree s.
To obtain the formulation of the fully discrete problem, we allow dynamic mesh change in

time, but the time steps km are kept constant in space. To this end, we associate with each
time point tm a mesh T m

h and corresponding (spatial) finite element spaces V sv,m
h and V

sp,m

h .
We then define the following space-time finite element space:

Xr,s
kh

:=
{
ukh = (vkh, pkh)

T
∣∣∣ vkh(0) ∈ (H0

h)
d, vkh

∣∣
Im

∈ Pr(Im, (Hm
h )d),

pkh
∣∣
Im

∈ Pr(Im, Lm
h ), m = 1, . . . ,M

}
,

where
Hm

h := V sv,m
h ∩H1

0 (Ω) and Lm
h := V

sp,m

h ∩ L2(Ω)/R.

Finally, the fully discrete formulation of problem (1.2) reads: Find ukh = (vkh, pkh)
T ∈ Xr,s

kh

such that
M∑

m=1

∫

Im

{
(∂tvkh,ψ) + ν(∇vkh,∇ψ) + ((vkh · ∇)vkh,ψ)

− (pkh,∇ ·ψ) + (∇ · vkh, χ)
}
dt+

M−1∑

m=0

([vkh]m,ψ+
m) + (v−kh,0,ψ

−
0 )

=

∫

I

(f ,ψ) dt+ (v0,ψ−
0 ) ∀ϕ = (ψ, χ)T ∈ Xr,s

kh ,

(2.1)

where
u±
kh,m

:= lim
ε↓0

ukh(tm ± ε), [ukh]m := u+
kh,m − u−

kh,m

denotes the limit “from above” and “from below” at time point tm as well as the “jump” of
discontinuous functions ukh, respectively.

2.3. Stabilization

The fully discrete formulation (2.1) does not lead to a stable approximation of problem (1.2)
unless the spatial finite element spaces Hm

h and Lm
h fulfill the Babuška-Brezzi inf-sup-stability

condition. This condition states (see, for example, [11]) that there is a constant β independent
of h such that

inf
ph∈Lm

h

sup
vh∈(Hm

h
)d

(ph,∇ · vh)
‖ph‖‖∇vh‖

≥ β > 0. (2.2)
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Figure 2: Geometry for the benchmark configuration “Laminar Flow Around a
Cylinder”

Especially in cases of equal-order trial spaces, i. e., sv = sp = s, condition (2.2) is not fulfilled in
general. To obtain stable approximations, one has to use different finite elements for velocities
and pressure such as the Taylor-Hood element (sv = 2, sp = 1, for example). For more
details on this topic, we refer to [12], [13], or [11]. Alternatively one may add stabilization
terms. For implementational reasons, we use equal-order trial spaces for the computation of
the benchmark and apply the so-called local projection stabilization (LPS), see, e. g., [14, 15].

For the computation of the subsequent examples, we used the two finite element packages
deal.II [16] and Gascoigne [17].

3. Problem description and reduction to a model problem

3.1. Description of the problem

In this subsection, we aim at computing the lift-coefficient in the two-dimensional benchmark
problem “Laminar Flow Around a Cylinder”, see [1] for a detailed description of the
configuration. The geometry is depicted in Figure 2.

The time-dependent inflow condition on the left side of the domain is given by

v1(t,x) =
6 sin(πt8 )

(0.41)2
x2(0.41− x2), v2(t,x) = 0.

On the outflow boundary on the right side of the computational domain, we apply the “do
nothing” boundary condition, see [18]. On all other boundaries, we prescribe no-slip Dirichlet
boundary conditions. The final time is set to T = 8. This setting leads to a Reynolds number

Re(t) = Ū(t)D
ν

based on the mean inflow velocity

Ū(t) =
2

3
v1(t, 0, 0.205) = sin

(πt
8

)
,

the viscosity ν = 10−3, and the diameter of the obstacle D = 0.1 of 0 ≤ Re(t) ≤ 100 for
t ∈ I = (0, 8).

In this example, we apply the dG(1) discretization in time with the stabilized Q1/Q1

discretization in space. After five iterations of adaptive temporal and spatial refinement using
dynamic meshes, following [6, 7], the temporal evolution of the lift-coefficient looks as depicted
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Figure 3: Lift-coefficient clift after five adaptation cycles using adaptive temporal and
spacial meshes (compare Figure 1)

in Figure 3. Here, the lift-coefficient is given as

clift = − 2

Ū2D

∫

S

(ν∂n(v · t)n1 + pn2) do,

where S denotes the surface of the obstacle, n = (n1, n2)
T is the outward unit normal vector on

S and (v ·t) denotes the tangential component of v with unit tangential vector t = (n2,−n1)
T .

We observe slight oscillations in the lift-coefficient, for example, near t = 7.25. However,
as indicated in Figure 1 these oscillations can become arbitrarily large, depending on the
chosen temporal and spatial discretizations. Further investigations in Section 3.2 show that
such oscillations especially occur when switching from one spatial mesh to another. In the
following sections, we will numerically analyze these oscillations.

3.2. Reduction to model problem

Let us first show that the arising problems are not related to the time-dependent inflow
boundary condition. To this end, we remove the oscillatory sine-term from the inflow condition
and reduce the inflow velocity to

v1(t,x) =
1.2

(0.41)2
x2(0.41− x2), v2(t,x) = 0.

This yields a constant Reynolds number of Re = 20 with a stationary solution. Since the effects
we want to study can already be seen when working with the simplest temporal discretization,
we apply the dG(0) discretization in time which here coincides with the backward Euler

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 00:1–24
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Figure 4: Temporal evolution of the lift-coefficient

scheme. For the discretization in space, we use the stabilized Q1/Q1 discretization. We again
focus on computing the lift-coefficient whose reference value in this configuration is given as

c
(ref)
lift

= 0.010618948146, see, for example [19].

We use the time interval I = (0, 8) with different spatial meshes. Denoting the meshes
on (2, 4] ∪ (6, 8] with Th, we use the mesh T2h on [0, 2] ∪ (4, 6]. That is, we perform uniform
refinement of the spatial mesh at t = 2 and t = 6, whereas at t = 4 uniform coarsening
is applied. The evolution of the lift-coefficient on the time interval [0.5, 8], obtained with a
uniform time step size of k = 1.5625 · 10−3, is shown in Figure 4. We neglect the beginning
of the time interval where a singularity in the pressure evolves for t → 0 due to compatibility
conditions that are not fulfilled with the initial condition v0 = 0, see, for instance, [20]. The
spatial meshes T2h and Th used in these computations are depicted in Figure 5.

We observe that precisely in the first time step on the new mesh the lift-coefficient
deteriorates. We also note that these errors are even larger than in the example presented
in the previous subsection.

In the remaining part of this section, we will consider the oscillations in the lift-coefficient
shown in the last section. We show that they are caused when switching from one spatial mesh
to another. These errors are located solely in the discrete pressure and localized to exactly one
interval. First we show that this effect can already be observed when solving the linear Stokes
equations instead of the nonlinear Navier-Stokes equations. Furthermore, these errors also
arise when applying uniform refinement of a mesh. We state a model problem on a polygonally
bounded domain in order to avoid special effects from the approximation of a curved boundary.
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(a) Mesh T2h

(b) Mesh Th

Figure 5: Spatial meshes used for the computation of the lift-coefficient

Hence, we want to find (v, p)T such that

∂tv −∆v +∇p = f in I ×Ω,

∇ · v = 0 in I ×Ω,

v = 0 in { 0 } ×Ω,

v = 0 on I × ∂Ω.

(3.1)

Here, we choose I = (0, 9) and Ω = (−1, 1)2. Let f be given in such a way that (3.1) possesses
the stationary limit

v(x) =

(
cos2(πx1

2 ) cos(πx2

2 ) sin(πx2

2 )
− cos(πx1

2 ) sin(πx1

2 ) cos2(πx2

2 )

)
,

p(x) = cos(πx1

2 ) sin(πx1

2 ) cos(πx2

2 ) sin(πx2

2 ).

We subdivide Ī = I(1) ∪ I(2) ∪ I(3) with

I(1) = [0, 3], I(2) = (3, 6], I(3) = (6, 9].

On I(1) and I(3), we use a uniform spatial mesh of cell size 2h, whereas on the subinterval I(2)

a uniform spatial mesh of cell size h is used. That is, we switch the spatial mesh uniformly
from 2h to h at t = 3 and from h to 2h at t = 6. The subintervals are chosen long enough for
the discrete solution to reach the stationary limit on each mesh.

The errors ‖∇(v − vkh)‖ and ‖p− pkh‖ for a uniform step size of k ≈ 2 · 10−4 and mesh
size h = 2−4 are shown in Figure 6. As we can see, both the velocity and the pressure
approximation show a transient phenomenon when switching the spatial mesh. However, while
the approximation of the velocity component is quite satisfactory, the transient phenomenon in
the pressure component is superposed by an additional error which causes the approximation
of the pressure to deteriorate under a change of the spatial mesh, see Figure 7.

In the next section, we will further analyze how these errors behave under systematic
refinement of the temporal and spatial discretization.
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Figure 6: Errors ‖∇(v − vkh)‖ (left) and ‖p− pkh‖ (right)
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Figure 7: Errors ‖∇(v − vkh)‖ (left) and ‖p− pkh‖ (right) near t = 6

4. ANALYSIS OF THE PROBLEM

4.1. Behavior of the error under temporal and spatial refinement

In this subsection, we numerically analyze the behavior of the error described in the last section.
We especially consider systematic uniform refinement of the temporal and spatial discretization.
The analysis will be done by means of the model problem presented in the previous section. We
are going to consider the equal-order Q1/Q1 and Q2/Q2 discretizations in space together with
the local projection stabilization as well as the inf-sup-stable Q2/Q1-Taylor-Hood element (see,
for instance, [12]). For the temporal discretization we will apply the dG(0) and dG(1) method
as well as the fractional-step-θ scheme, which is a popular time-stepping scheme often used in
computational fluid dynamics, see [21], [22], [23] or [24, 25]. For convenience of the reader, we
briefly recall the precise form of the fractional-step-θ scheme: Let the parameters

θ = 1− 1

2

√
2, θ′ = 1− 2θ, α =

θ′

1− θ
, β = 1− α

be given. Then one fractional-step-θ time step (Vm−1, Pm−1)
T → (Vm, Pm)T for the

incompressible Navier-Stokes equations consists of the following three sub-steps tm−1 →
tm−1+θ → tm−θ → tm (where the equations should be fulfilled for all ϕ = (ψ, χ)T ∈

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 00:1–24
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10 M. BESIER AND W. WOLLNER

(Hm
h )d × Lm

h ):

(Vm−1+θ,ψ) + αθkm
{
ν(∇Vm−1+θ,∇ψ) + ((Vm−1+θ · ∇)Vm−1+θ,ψ)

}

+ θkm(Pm−1+θ,∇ ·ψ) = (Vm−1,ψ)− βθkm
{
ν(∇Vm−1,∇ψ)

+ ((Vm−1 · ∇)Vm−1,ψ)
}
+ θkm(fm−1,ψ)

(∇ · Vm−1+θ, χ) = 0

(Vm−θ,ψ) + βθ′km
{
ν(∇Vm−θ,∇ψ) + ((Vm−θ · ∇)Vm−θ,ψ)

}

+ θ′km(Pm−θ,∇ ·ψ) = (Vm−1+θ,ψ)− αθ′km
{
ν(∇Vm−1+θ,∇ψ)

+ ((Vm−1+θ · ∇)Vm−1+θ,ψ)
}
+ θ′km(fm−θ,ψ)

(∇ · Vm−θ, χ) = 0

(Vm,ψ) + αθkm
{
ν(∇Vm,∇ψ) + ((Vm · ∇)Vm,ψ)

}

+ θkm(Pm,∇ ·ψ) = (Vm−θ,ψ)− βθkm
{
ν(∇Vm−θ,∇ψ)

+ ((Vm−θ · ∇)Vm−θ,ψ)
}
+ θkm(fm−θ,ψ)

(∇ · Vm, χ) = 0

For simplicity, we have omitted terms arising from stabilization.
In what follows, the behavior of the error in the pressure under systematic uniform refinement

of the spatial or the temporal discretization is studied for different spatial and temporal
discretizations. Since the error is concentrated to the first time step on a new mesh, we
especially focus on its development there.

4.1.1. Spatial refinement This subsection is dedicated to the numerical analysis of the error
in the pressure under uniform refinement of the spatial discretization. To this end, we fix the
temporal discretization with a uniform time step size of k = 3 · 10−2. As mentioned in the
previous section, we use the mesh T2h on I(1) and I(3), whereas on I(2) the mesh Th is used.
We study the development of the error in the pressure component for h → 0.

The numerical order of convergence of ‖p− pkh‖ obtained after four uniform refinements of
the spatial meshes starting with h = 1

4 is given in Table I. We can conclude that the error in
the pressure component in the first time step on a new spatial mesh converges for h → 0 (at
least) with the same order as the overall spatial discretization error.

4.1.2. Temporal refinement In this subsection, the development of the pressure error under
systematic uniform refinement of the temporal discretization is considered, that is we consider
the case k → 0. To this end, we fix the spatial discretization with h = 1

16 .
The numerical order of convergence of ‖p− pkh‖ obtained by uniform refinement of the time

step size, starting with k = 1.875 · 10−3, is given in Table II.
We observe that under uniform refinement of the temporal discretization the error in the

pressure component when uniformly refining the spatial mesh increases like O(k−1) for the
dG(0) and the dG(1) discretization whereas for the fractional-step-θ scheme this error is almost

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 00:1–24
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Table I: Order of convergence of ‖p− pkh‖ under spatial refinement with fixed time
step size k = 3 · 10−2 with different spatial and temporal discretizations at the mesh
directly following the change of the spatial meshes

dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

Q1/Q1 1.66 1.70 1.38 1.49 1.38 1.60
Q2/Q2 2.02 2.00 2.07 2.00 2.06 2.00
Q2/Q1 2.04 2.03 2.15 2.02 2.06 2.02

Table II: Order of convergence of ‖p− pkh‖ under temporal refinement with fixed
spatial mesh size h = 1

16 with different spatial and temporal discretizations at the
mesh directly following the change of the spatial meshes

dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

Q1/Q1 −0.94 −0.95 −0.99 −1.03 −0.22 0.00
Q2/Q2 −0.96 −0.92 −1.02 −1.03 −0.14 −0.06
Q2/Q1 −0.96 −0.92 −1.01 −1.03 −0.15 −0.07

independent of k. The reason for this behavior of the fractional-step-θ scheme will be clarified
in Remark 5.1. For uniform coarsening of the spatial mesh we observe the same behavior.

Since the support of this error is exactly one time step, this shows the behavior of a
Dirac approximation and hence the error, for example, in mean functional values involving
the pressure, does not vanish for k → 0 unless h → 0 sufficiently fast (compare Section 4.1.1).

4.2. Theoretical investigation

This section presents a theoretical investigation of the behavior of the pressure approximation
when switching the spatial mesh. To this end, we consider the inf-sup-stable Q2/Q1-Taylor-
Hood element for the spatial discretization in combination with the backward Euler time-
stepping scheme. As our numerical results indicate it will be sufficient to consider one step
of the backward Euler method (e. g., the dG(0) time discretization) during which the spatial
discretization is changed to explain the undesired behavior of the pressure. As in the previous
subsections, we consider uniform refinement or coarsening of a uniform mesh. Furthermore, we
assume the domain Ω ⊆ R

d, d ∈ { 2, 3 }, to be bounded, polygonal and convex.
Let (v, p)T ∈ H1

0 (Ω)d × L2(Ω)/R be the unique solution of the stationary Stokes problem
for Re = 1:

(∇v,∇ψ)− (p,∇ ·ψ) = (f ,ψ) ∀ψ ∈ H1
0 (Ω)d,

(∇ · v, χ) = 0 ∀χ ∈ L2(Ω)/R.
(4.1)

Then, this solution also satisfies (v, p)T ∈ H2(Ω)d ×H1(Ω) as well as the a priori estimate

‖v‖H2(Ω) + ‖p‖H1 ≤ C‖f‖, (4.2)

see [26] and [27].
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12 M. BESIER AND W. WOLLNER

Let a uniform decomposition TH of Ω ⊆ R
d into cells be given. We define the following

conforming finite element spaces for the Taylor-Hood element:

HH :=
{
vH ∈ C(Ω)

∣∣∣ vH
∣∣
K

∈ Q2(K) ∀K ∈ TH
}
∩H1

0 (Ω),

LH :=
{
pH ∈ C(Ω)

∣∣∣ pH
∣∣
K

∈ Q1(K) ∀K ∈ TH
}
∩ L2(Ω)/R.

Let (vH , pH)T ∈ Hd
H × LH be the approximate solution on the mesh TH , that is

(∇vH ,∇ψ)− (pH ,∇ ·ψ) = (f ,ψ) ∀ψ ∈ Hd
H ,

(∇ · vH , χ) = 0 ∀χ ∈ LH .
(4.3)

Uniformly refining or coarsening the mesh TH yields a spatial mesh Th and the corresponding
finite element spaces

Hh :=
{
vh ∈ C(Ω)

∣∣∣ vh
∣∣
K

∈ Q2(K) ∀K ∈ Th
}
∩H1

0 (Ω),

Lh :=
{
ph ∈ C(Ω)

∣∣∣ ph
∣∣
K

∈ Q1(K) ∀K ∈ Th
}
∩ L2(Ω)/R.

We note that in contrast to the previous section, we symbolize the difference between the
spatial discretizations on the two considered time points by the subscripts H and h rather
than by the superscript, e.g., here, we consider HH and Hh instead of Hm−1

h and Hm
h .

Performing one backward Euler step with step size k seeks the solution (vkh, p
k
h)

T ∈ Hd
h×Lh

of

k−1(vkh,ψ) + (∇vkh,∇ψ)− (pkh,∇ ·ψ) = k−1(vH ,ψ) + (f ,ψ) ∀ψ ∈ Hd
h,

(∇ · vkh, χ) = 0 ∀χ ∈ Lh.
(4.4)

Using the H-projection P̃hvH of vH into Hd
h as initial value in the backward Euler step, yields

the solution (v̂kh, p̂
k
h)

T ∈ Hd
h × Lh of

k−1(v̂kh,ψ) + (∇v̂kh,∇ψ)− (p̂kh,∇ ·ψ) = k−1(P̃hvH ,ψ) + (f ,ψ) ∀ψ ∈ Hd
h,

(∇ · v̂kh, χ) = 0 ∀χ ∈ Lh.
(4.5)

Here, P̃hvH is given as the first component of the solution (P̃hvH , p̃Hh )T ∈ Hd
h × Lh of

(P̃hvH ,ψ)− (p̃Hh ,∇ ·ψ) = (vH ,ψ) ∀ψ ∈ Hd
h,

(∇ · P̃hvH , χ) = 0 ∀χ ∈ Lh.
(4.6)

It is clear that ‖P̃h‖L(L2,L2) = 1 by construction, i. e., for any v ∈ L2(Ω)d it holds

‖P̃hv‖ ≤ ‖v‖.

Lemma 4.1. The functions vkh defined by (4.4) and v̂kh defined by (4.5) coincide. Further,
there exists a function v0h ∈ Hd

h and a sequence k → 0 such that the sequence vkh fulfills

‖vkh − v0h‖ → 0 (k → 0).
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PRESSURE APPROXIMATION ON DYNAMIC MESHES 13

Proof. If we subtract equation (4.5) from (4.4), we obtain for arbitrary (ψ, χ)T ∈ Hd
h × Lh

k−1(vkh − v̂kh,ψ) + (∇(vkh − v̂kh),∇ψ)− (pkh − p̂kh,∇ ·ψ) = −k−1(p̃Hh ,∇ ·ψ),
(∇ · (vkh − v̂kh), χ) = 0,

(4.7)

where we have applied (4.6) to obtain the right-hand side. Testing (4.7) with ψ = vkh−v̂kh ∈ Hd
h

and χ = pkh − p̂kh leads to

k−1‖vkh − v̂kh‖2 + ‖∇(vkh − v̂kh)‖2 = 0,

where the other terms cancel out due to the second equation of (4.7). Hence, we have vkh = v̂kh.
When testing equation (4.4) with ψ = vkh and χ = pkh, we obtain

k−1‖vkh‖2 + ‖∇vkh‖2 = k−1(vH ,vkh) + (f ,vkh)

and hence
‖vkh‖ ≤ ‖vH‖+ k‖f‖.

Since vH and f do not depend on time, we conclude that ‖vkh‖ remains bounded for k → 0.
Hence, there is at least one sequence k → 0 and a function v0h ∈ Hd

h such that

‖vkh − v0h‖ → 0 (k → 0).

2

Since Hd
h is finite dimensional, vkh converges to v0h in every norm, even point-wise. For the

following, we define the L2-projection Ph : L
2(Ω)d → Hd

h as usual by

(Phv,ψ) = (v,ψ) ∀ψ ∈ Hd
h.

We are now prepared to proof the observed divergence of the pressure as k → 0.

Lemma 4.2. The function v0h ∈ Hd
h given by Lemma 4.1 is uniquely determined by v0h =

P̃hvH . Let pkh ∈ Lh be given by (4.4), then either

a) P̃hvH = PhvH or b) ‖pkh‖ ≥ C(h)k−1

with some constant C(h) > 0 independent of k.

Proof. Let v0h ∈ Hd
h and k → 0 be any sequence such that vkh → v0h, the existence of such

objects is ensured by Lemma 4.1.
We note that (4.4) is equivalent to the algebraic system

(
M + kA kB
−BT 0

)(
xk

yk

)
=

(
bk

0

)
(4.8)

with

M =
(
(ψj ,ψi)

)
i,j=1,...,NH

, A =
(
(∇ψj ,∇ψi)

)
i,j=1,...,NH

,

B =
(
−(χj ,∇ ·ψi)

)
i=1,...,NH ,
j=1,...,NL
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14 M. BESIER AND W. WOLLNER

and right-hand side
bk =

(
(vH ,ψi) + k(f ,ψi)

)
i=1,...,NH

where we use the representations

vkh =

NH∑

j=1

xk
jψj and pkh =

NL∑

j=1

ykj χj .

Here, {ψj | j = 1, . . . , NH} is a basis of Hd
h while {χj | j = 1, . . . , NL} is a basis of Lh. This

especially means
Mxk + kAxk + kByk = bk. (4.9)

Since vkh converges point-wise to v0h, we have xk → x0 with

v0h =

NH∑

j=1

x0
jψj .

For k → 0, we have
bk → b0 =

(
(vH ,ψi)

)
i=1,...,NH

=Mx̄,

because vH and f do not depend on time, and x̄ ∈ R
NH is given by

PhvH =

NH∑

j=1

x̄jψj .

In virtue of (4.9), we conclude that kyk converges for k → 0, too. We denote the limit by
y0. Hence, by passing to the limit k → 0 in (4.9), we obtain

Mx0 +By0 =Mx̄. (4.10)

Then by defining

p0h =

NL∑

j=1

y0jχj ∈ Lh,

equation (4.10) may equivalently be written as

(v0h,ψ)− (p0h,∇ ·ψ) = (PhvH ,ψ) = (vH ,ψ) ∀ψ ∈ Hd
h,

which together with the second equation in (4.8) states that v0h is just the H-projection of vH
into Hd

h. In particular v0h is uniquely determined and convergence in Lemma 4.1 is obtained
for any sequence k → 0.

To continue, we note that if y0 = 0 we have x0 = x̄ or equivalently PhvH = v0h = P̃hvH .
Otherwise y0 6= 0, hence there is j ∈ { 1, . . . , NL } with y0j 6= 0 and thus by definition kykj 6→ 0.
This means there exists some constant C(h) > 0 such that

|ykj | ≥ C(h)k−1 and hence ‖pkh‖ ≥ C(h)k−1.

2

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 00:1–24
Prepared using fldauth.cls



PRESSURE APPROXIMATION ON DYNAMIC MESHES 15

Remark 4.3. If Th is obtained from TH by uniform refinement, then we obviously have
HH ⊆ Hh as well as LH ⊆ Lh and thus the L2-projection from HH onto Hh is the identity
mapping. As a consequence, we have PhvH = vH . However, in general, we have

(∇ · vH , χ) 6= 0

for χ ∈ Lh \ LH also in this case and hence PhvH 6= P̃hvH .

In the remaining part of this section, we want to show that the pressure approximations p̂kh
obtained through equation (4.5) remain bounded for k → 0.

To do so, we introduce some auxiliary quantities: Similar to (4.3), let the approximate
solution (vh, ph)

T ∈ Hd
h × Lh of the Stokes problem on the mesh Th be given by

(∇vh,∇ψ)− (ph,∇ ·ψ) = (f ,ψ) ∀ψ ∈ Hd
h,

(∇ · vh, χ) = 0 ∀χ ∈ Lh.
(4.11)

Then, in addition to the H-projection P̃hv of the continuous velocity v defined by (4.6), we

consider the V -projection R̃hv of the continuous velocity v into Hd
h. It is given as the first

component of the solution (R̃hv, r̃h)
T ∈ Hd

h × Lh of

(∇R̃hv,∇ψ)− (r̃h,∇ ·ψ) = (∇v,∇ψ) ∀ψ ∈ Hd
h,

(∇ · R̃hv, χ) = 0 ∀χ ∈ Lh.
(4.12)

Again, it is clear that for any v ∈ H1
0 (Ω)d it holds ‖∇R̃hv‖ ≤ ‖∇v‖.

Lemma 4.4. The pressure p̂kh given by (4.5) is bounded independent of k.

Proof. Subtracting k−1 times the first equation of (4.6) from the first equation of (4.4) leads
to

k−1(vkh − P̃hvH ,ψ) + (∇vkh,∇ψ)− k−1(kpkh − p̃Hh ,∇ ·ψ) = (f ,ψ) ∀ψ ∈ Hd
h

or equivalently

k−1(vkh − P̃hvH ,ψ) + (∇(vkh − P̃hvH),∇ψ)− k−1(kpkh − p̃Hh ,∇ ·ψ)
= (f ,ψ)− (∇P̃hvH ,∇ψ) ∀ψ ∈ Hd

h.

By testing with ψ = vkh − P̃hvH ∈ Hd
h, we obtain

k−1‖vkh − P̃hvH‖2 + ‖∇(vkh − P̃hvH)‖2

= (f ,vkh − P̃hvH)− (∇P̃hvH ,∇(vkh − P̃hvH)), (4.13)

because the other terms cancel out due to the second equations of (4.4) and (4.6). We then
have for arbitrary ψ ∈ Hd

h

|(∇P̃hvH ,∇ψ)| = |(∇(P̃hvH − R̃hv),∇ψ) + (∇(R̃hv − v),∇ψ) + (∇v,∇ψ)|
≤
{
‖∇(P̃hvH − R̃hv)‖+ ‖∇(R̃hv − v)‖

}
‖∇ψ‖+ |(∆v,ψ)|

≤ C
{
h−2‖P̃hvH − R̃hv‖+ h−1‖∇(R̃hv − v)‖+ ‖∆v‖

}
‖ψ‖

≤ Ch−2
{
‖P̃hvH − P̃hv‖+ ‖P̃hv − v‖+ ‖v − R̃hv‖
+ h‖∇(R̃hv − v)‖+ h2‖∆v‖

}
‖ψ‖,

(4.14)
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16 M. BESIER AND W. WOLLNER

where in the penultimate line inverse estimates have been used. We will now treat each term
on the right-hand side of (4.14) separately.

By continuity of the H-projection and standard approximation results (see, for instance, [11])
and the a priori estimate (4.2), we obtain

‖P̃hvH − P̃hv‖ ≤ ‖v − vH‖ ≤ CH2
{
‖v‖H2 + ‖p‖H1

}
≤ CH2‖f‖. (4.15)

In order to estimate the next term, we note that by best-approximation of the H-projection

‖P̃hv − v‖ ≤ ‖v − vh‖ ≤ Ch2‖f‖. (4.16)

From best-approximation of the V -projection we get

‖∇(R̃hv − v)‖ ≤ ‖∇(v − vh)‖ ≤ Ch‖f‖. (4.17)

Using standard error estimates for the V -projection, see, e. g. [20], yields

‖v − R̃hv‖ ≤ Ch2‖f‖. (4.18)

Finally, we obviously have
‖∆v‖ ≤ ‖v‖H2 ≤ C‖f‖. (4.19)

Inserting the estimates (4.15), (4.16), (4.17), (4.18), and (4.19) into (4.14) then yields

|(∇P̃hvH ,∇ψ)| ≤ C
(
1 + (H

h
)2
)
‖f‖‖ψ‖.

Since we only consider uniform refinement or uniform coarsening, we have H = 2h or H = 1
2h

and thus
|(∇P̃hvH ,∇ψ)| ≤ C‖f‖‖ψ‖. (4.20)

This allows us to conclude from (4.13):

k−1‖vkh − P̃hvH‖2 + ‖∇(vkh − P̃hvH)‖2 ≤ ‖f‖‖vkh − P̃hvH‖+ |(∇P̃hvH ,∇(vkh − P̃hvH))|
≤ C‖f‖‖vkh − P̃hvH‖

and hence
k−1‖vkh − P̃hvH‖ ≤ C‖f‖. (4.21)

By using the Poincaré inequality, we also obtain from (4.20)

|(∇P̃hvH ,∇ψ)| ≤ C‖f‖‖∇ψ‖ (4.22)

and therefore from (4.13) also

‖∇(vkh − P̃hvH)‖ ≤ C‖f‖. (4.23)

To show that ‖p̂kh‖ remains bounded for k → 0, we use the inf-sup condition (2.2) and the
fact that vkh = v̂kh which allows us to replace v̂kh by vkh in (4.5) to obtain:

β‖p̂kh‖ ≤ sup
ψ∈Hd

h

(p̂kh,∇ ·ψ)
‖∇ψ‖

= sup
ψ∈Hd

h

k−1(vkh − P̃hvH ,ψ) + (∇(vkh − P̃hvH),∇ψ) + (∇P̃hvH ,∇ψ)− (f ,ψ)

‖∇ψ‖

≤ Ck−1‖vkh − P̃hvH‖+ ‖∇(vkh − P̃hvH)‖+ sup
ψ∈Hd

h

|(∇P̃hvH ,∇ψ)|
‖∇ψ‖ + C‖f‖

≤ C‖f‖.
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Here, the estimates (4.21), (4.22), and (4.23) have been used. Since the right-hand side is
independent of k, we have shown that ‖p̂kh‖ remains bounded for k → 0. 2

Remark 4.5. The arguments used above to show that ‖pkh‖ ≥ C(h)k−1 if there is a χ ∈ Lh

such that (∇·PhvH , χ) 6= 0 are not restricted to the case of uniform refinement or coarsening of
the meshes. Actually, they directly carry over to the case of arbitrary refinement or coarsening
of cells. The estimate for the boundedness of ‖p̂kh‖ can be generalized as long as we are able

to bound ‖∇P̃hvH‖ and ‖∆̃hP̃hvH‖ where ∆̃hP̃hvH denotes the discrete Stokes operator of

P̃hvH given by

(∆̃hP̃hvH ,ψ) = −(∇P̃hvH ,∇ψ) ∀ψ ∈ Hd
h ∩

{
ψ
∣∣ (∇ ·ψ, χ) = 0 ∀χ ∈ Lh

}
.

We showed that on dynamic spatial meshes bounded pressure approximations are only
possible if the L2-projection of the velocity from the first mesh is divergence-free with respect
to the test functions of the new mesh. Otherwise, the pressure approximation contains k−1

times the Lagrange multiplier occurring in the H-projection of the old velocity field into the
new finite element space which leads to the unbounded behavior for k → 0.

5. SOLUTION OF THE PROBLEM

The following Subsection 5.1 presents some attempts to solve the problem discussed in this
article.

5.1. Attempts to solve this problem

We have seen in the previous section that the error in the pressure occurring when switching
the spatial mesh decreases with (at least) the same order as the spatial discretization error for
h → 0, but increases like O(k−1) for k → 0. We showed that this effect does not originate from
the stabilization since the inf-sup-stable Taylor-Hood element also produces qualitatively the
same error. In this subsection, we discuss some attempts to overcome this problem and obtain
pressure approximations which remain bounded for k → 0.

We also showed analytically that the error in the pressure approximation which is solely
located in the first time step on a new spatial mesh is unavoidable if the L2-projection of the
old velocity field is not divergence-free with respect to test functions of the new finite element
space for the pressure. However, the proposed approach to solving this problem namely taking
the divergence-free L2-projection as initial values on the new spatial mesh might be too costly
to perform each time the mesh is changed. Therefore, we present two alternatives to the H-
projection that might be easier to implement or less costly. We remark that differences are
gradually as in principal all proposed methods can be solved in linear time with respect to
the degrees of freedom provided sufficient effort has been spent on the implementation of a
suitable solver. However, as we will see in Section 5.2 both alternatives introduce additional
errors that may accumulate under frequent mesh changes.

To sum up, the three “ideas” discussed in this section are:

Divergence-free L2-projection (H-projection):

After computing (Vm−1, Pm−1)
T ∈ (Hm−1

h )d × Lm−1
h first compute a projection Ṽm−1
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18 M. BESIER AND W. WOLLNER

of Vm−1 into (Hm
h )d which is divergence-free with respect to test functions in (Hm

h )d and
use this projection as initial values for the next time step. The projection is determined
by

(Ṽm−1,ψ)− (P̃ ,∇ ·ψ) = (Vm−1,ψ) ∀ψ ∈ (Hm
h )d,

(∇ · Ṽm−1, χ) = 0 ∀χ ∈ Lm
h .

(5.1)

As we have shown in Section 4.2 this projection removes the undesired O(k−1) error in
the pressure. Unfortunately, the efficient solution of (5.1) requires different solvers than
the efficient solution of a time step. This means that additional effort has to be spent on
the implementation.

Divergence-free H1
0
-projection (V -projection):

Same procedure as for “Divergence-free L2-projection”, but this time the projection is
determined by

(∇Ṽm−1,∇ψ)− (P̃ ,∇ ·ψ) = (∇Vm−1,∇ψ) ∀ψ ∈ (Hm
h )d,

(∇ · Ṽm−1, χ) = 0 ∀χ ∈ Lm
h .

(5.2)

In contrast to (5.1) the solution of (5.2) can be done by the same solver routines required
for the solution of a newton step of the nonlinear problem. However, it requires that
matrices are specially assembled.

Repeating one time step:
After computing (Vm−1, Pm−1)

T ∈ (Hm−1
h )d × Lm−1

h repeat the current time step to

determine approximations (Ṽm−1, P̃m−1)
T ∈ (Hm

h )d × Lm
h for t = tm−1, but already in

the finite element spaces corresponding to t = tm. One can hope that then only P̃m−1

contains this error and since Ṽm−1 is divergence-free with respect to test functions in
Lm
h this error does not occur again when computing (Vm, Pm)T ∈ (Hm

h )d × Lm
h using

the initial values Ṽm−1.

As for the V-projection (5.2) the solution of this problem can be done using the same
solver routines required for the solution of a newton step of the nonlinear problem.
In contrast to the solution of (5.2) it is possible to reuse the matrices built for the
computation of the time step. Hence it is potentially faster than (5.2). Unfortunately
the problem is nonlinear, and hence possibly several linear system solves are required
making the advantage over (5.2) less obvious.

For the equal-order spatial discretizations Q1/Q1 and Q2/Q2 the variational formulations
given above have to be stabilized, of course. This is once again done by means of the local
projection stabilization.

Since the behavior of the pressure error is already of the right order for h → 0, we discuss
in this subsection only the influence of the presented “ideas” on the development of the error
under uniform temporal refinement. We repeat the investigation of Section 4.1.2 using the
proposed modifications.

5.1.1. H-projection In this subsection, we present the development of the pressure error when
using the H-projection of the old velocity field into the new finite element space as initial values
when switching the spatial mesh.
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Table III: Convergence order of ‖p− pkh‖ under temporal refinement with fixed
spatial mesh size h = 1

16 with different spatial and temporal discretizations at the
mesh directly following the change of the spatial meshes using H-projection

dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

Q1/Q1 −0.04 0.00 −0.03 0.00 −0.06 0.00
Q2/Q2 0.00 −0.14 0.06 −0.17 0.07 −0.15
Q2/Q1 −0.15 −0.07 −0.16 −0.08 −0.13 −0.08

Table IV: Convergence order of ‖p− pkh‖ under temporal refinement with fixed
spatial mesh size h = 1

16 with different spatial and temporal discretizations at the
mesh directly following the change of the spatial meshes using V -projection

dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

Q1/Q1 −0.20 0.00 −0.26 0.00 −0.20 0.00
Q2/Q2 −0.14 −0.01 −0.16 −0.01 −0.13 −0.01
Q2/Q1 −0.14 0.00 −0.15 −0.01 −0.12 0.00

The results under uniform temporal refinement are listed in Tables III for the Q1/Q1, Q2/Q2

and Q2/Q1 spatial discretization, respectively.
We can conclude that using the H-projection of the velocity of the last time step into

the new finite element space as initial values leads to pressure errors which are bounded for
k → 0 as predicted by our analysis in Section 4.2. Actually, the pressure error becomes almost
independent of k.

5.1.2. V -projection In this subsection, we present the development of the pressure error when
using the V -projection of the old velocity field into the new finite element space as initial values
when switching the spatial mesh.

The results under uniform temporal refinement are listed in Tables IV for the Q1/Q1, Q2/Q2,
and Q2/Q1 spatial discretization, respectively.

Using the V -projection of the old velocity into the new finite element space also leads to
pressure errors which remain bounded for k → 0.

5.1.3. Repeating one time step In this subsection, we present the development of the pressure
error when repeating the last time step of the old spatial mesh on the new one to determine
the initial values for the first real time step on the new mesh.

The results under uniform temporal refinement are listed in Tables V for the Q1/Q1, Q2/Q2,
and Q2/Q1 spatial discretization, respectively.

We observe for all spatial discretizations that repeating one time step leads to a slower
increase of the error in the pressure when switching the spatial mesh from T2h to Th and to
an almost constant error when switching from Th to T2h.
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Table V: Convergence order of ‖p− pkh‖ under temporal refinement with fixed spatial
mesh size h = 1

16 with different spatial and temporal discretizations at the mesh
directly following the change of the spatial meshes with repetition of one time step

dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

Q1/Q1 −0.46 0.00 −0.61 0.00 −0.43 0.00
Q2/Q2 −0.31 0.01 −0.37 0.02 −0.34 −0.10
Q2/Q1 −0.31 −0.13 −0.37 −0.14 −0.20 −0.09

Remark 5.1. We remark that the behavior of the fractional-step-θ scheme is hardly a surprise
given the results from Section 4.1.2. However, after our analysis in Section 4.2 we can now
explain, why the fractional-step-θ scheme doesn’t show the undesired divergence of the pressure
even without modifications. Namely we saw that the divergence of the pressure is localized to
the first time step after changing the mesh. However, in the fractional-step-θ scheme this is
only the first substep of a complete time step. Hence, one ignores this “solution” as it is only
an intermediate quantity. This gives rise to another method to overcome this defect. Namely,
one may neglect the time step immediately after changing the spatial mesh.

5.2. Application to the benchmark problem

We have seen that all three “ideas” are able to (almost) remove the O(k−1) increase in the
pressure error while the H-projection performed best.

In this subsection, in order to compare all strategies, we return to the benchmark
configuration “Laminar Flow Around a Cylinder” with constant inflow and Reynolds number
Re = 20 which possesses a stationary solution. The discretization used here is again the dG(0)
method in time with a Q1/Q1 discretization in space involving local projection stabilization.
In Figure 8, the temporal evolution of the lift-coefficient is depicted for different choices of
the initial value. For completeness, we also show the results of the fractional-step-θ scheme
combined with a Q1/Q1 discretization in space and local projection stabilization. The upper
picture shows the development when switching the spatial mesh from T2h to Th which
corresponds to a uniform refinement, while the lower picture shows the lift-coefficient when
switching from Th to T2h which corresponds to a uniform coarsening. The labeling of the
different curves is as follows:

• “original”: No additional operations are performed when switching the spatial mesh.
• “H-projection”: When switching the spatial mesh, the H-projection of the old velocity

into the new finite element space is used as initial values for the new time step.
• “V -projection”: When switching the spatial mesh, the V -projection of the old velocity

into the new finite element space is used as initial values for the new time step.
• “repeat”: When switching the spatial mesh, the last time step is repeated already on the

new mesh to obtain initial values.

When looking at the upper picture of Figure 8, we note the large error in the lift-coefficient
for the “original” method. The curves of the “H-projection” and “V -projection” show a slightly
different temporal evolution where the “H-projection” approaches the “original” curve faster.
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Repeating one time step leads to a temporal evolution of the lift-coefficient which is close to
the values produced by the fractional-step-θ scheme.

If we consider the lower picture of Figure 8 which shows the temporal evolution of the lift-
coefficient under a uniform coarsening of the spatial mesh, we observe quite large differences
between the different strategies. While the “H-projection” mainly eliminates the large error of
the “original” curve and stays very close to it elsewhere. The other “ideas” lead to completely
different temporal evolutions of the lift-coefficient. Of course, for t → ∞, those values converge
to the same stationary limit as the other methods. The fractional-step-θ scheme mainly leads
to the same evolution of the lift-coefficient as the “H-projection”.

In computations the choice of either of these methods might be advantageous over the
others depending on which of the problems can be solved more efficiently by a given flow
solver. However, we see from Figure 8 that both V -projection and repetition of a time step
give rise to significantly larger errors, especially when coarsening of the mesh occurs. However
even the H-projection is not optimal when refining the mesh. This leads to the conclusion that
the apparently best possibility lies in neglecting the time step directly after the spatial mesh
changes, possibly by adding an intermediate time step as it is done in the fractional-step-θ
scheme.

To conclude this subsection, let us reconsider the initial time-dependent benchmark problem
from Section 3.1. Figure 9 shows the temporal evolution of the lift-coefficient after five iterations
of adaptive temporal and spatial refinement using dynamic meshes in combination with the
H-projection (left picture) or the V -projection (right picture) each time the spatial mesh is
changed. We observe that the oscillations showing up without using additional projection steps
when changing the spatial mesh (see Figure 3) have vanished. Furthermore, we note a slightly
different temporal evolution of the lift-coefficient, especially at the end of the time interval.
This is due to the fact that the adaptive refinement leads to different meshes and time step
sizes when applying projection steps. However, the temporal evolution depicted in Figure 9 is
closer to that of the reference solution, see [28].

CONCLUSIONS

In this article we analyzed the behavior of the pressure on changing spatial meshes during
the computation of nonstationary incompressible fluid flows for several time stepping schemes.
In particular, we showed that whenever the spatial mesh is changed between two time steps
the discrete pressure will in general diverge with order k−1 in the following time step. This
behavior was proven, for the dG(0) time discretization, to be due to the fact that discrete
solenoidal vector fields lose this property under changes of the discrete spaces. Finally we
showed that this defect can be removed by an appropriate projection step. However, as the
defect is localized in time, the most promising alternative, from a computational point of view,
is to add an additional intermediate time step that is neglected when evaluating the pressure.
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Figure 8: Temporal evolution of the lift-coefficient for different initial values
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Figure 9: Lift-coefficient clift after five adaptation cycles with different types of
projection steps
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