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Abstract. In this paper we are concerned with the application of interior point methods in
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1. Introduction. In a large number of processes that are modeled using par-
tial differential equations bounds on the gradient of the state variable are of vital
importance for the underlying model: large temperature gradients during cooling or
heating processes may lead to destruction of the object, that is being cooled or heated;
in elasticity the gradient of the deformation determines the change between elastic
and plastic material behavior. In any attempt to optimize such processes the gradient
therefore has to be regarded. However, not much attention was given to constraints
of gradient type, see [5–8,13,19,22,31].

Problems with constraints on the state (pointwise or regarding the gradient) form
a class of highly nonlinear and non-smooth problems. A popular approach for their
efficient solution are path-following methods, which solve a sequence of easier to tackle
problems. These methods are constructed in a way such that the sequence of the
solutions converges to the solution of the original problem. Among these methods
one can distinguish three main lines of research. Lavrentiev regularization methods
due to Tröltzsch et al. [9, 23, 24,30], Moreau-Yosida approximation methods due
to Hintermüller and Kunisch [2, 3, 20–22] and interior point methods [28, 29].
While the first two candidates abandon feasibility to improve the regularity of the
dual variables, interior point methods yield feasible solutions and aim towards smooth
systems of equations.

Application of interior point methods to gradient bounds has been proposed in [31]
together with a posteriori error estimates with respect to the interior point parameter
and the discretization error. A recent and very comprehensive discussion of the ap-
plication of Moreau-Yosida approximation to a class of problems containing gradient
constraints has been given in [22]. To the authors’ knowledge, there are currently no
contributions on the application of Lavrentiev techniques to gradient bounds.

In this paper we perform the analysis of the homotopy path generated by barrier
methods to problems with gradient bounds. We approach this problem on the base of
the analysis in [29], where pointwise state constraints are considered. Although we can
build up on techniques and results established there, it will turn out that a number
of interesting, additional issues arise in the case of gradient bounds. For example, the
topological framework has to be chosen differently with a C1-norm, and in contrast
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to pointwise state constraints the gradient bounds considered here are nonlinear.

Our paper is structured as follows. In Section 2 we establish an abstract the-
oretical framework for our analysis and illustrate the application of the framework
to some PDE constrained optimal control problems. In Section 3 we consider barrier
functionals for gradient bounds and characterize their subdifferentials. Then existence
of minimizers and first order optimality conditions are established, together with uni-
form bounds on the barrier gradients. Finally we consider the convergence of the path
of minimizers and derive an order of convergence for a typical case.

2. Gradient Constrained Optimal Control Problems. Let Ω be a bounded
Lipschitz domain in R

d, ∅ 6= ΩC ⊆ Ω be an open subset, and let ΩC be its closure.
Define the space of states U as a closed subspace of C1(ΩC) ⊕ L2(Ω \ ΩC), which
is clearly a Banach space, and let W ⊂ U be a dense subspace of U . Consider
W =W 2,p(Ω) ⊂ U = C1(ΩC)⊕ L2(Ω \ ΩC) with p > d for an example.

Remark 2.1. The choice U ⊂ C1(ΩC)⊕L2(Ω\ΩC) means, that we consider the
norm ‖ · ‖U := ‖u‖C1(ΩC) + ‖u‖2L2(Ω\ΩC). Another possible choice would have been to

use Ũ ⊂ C1(ΩC) ∩ L2(Ω) equipped with the norm ‖ · ‖Ũ := ‖u‖C1(ΩC) + ‖u‖2L2(Ω). It
is clear that both spaces can be continuously embedded into the other by the use of the
mapping U → Ũ given by

u1 ⊕ u2 7→ ũ :=

{

u1 on ΩC

u2 otherwise

where u1 ∈ C1(ΩC) and u2 ∈ L2(Ω \ ΩC).
Further, consider two reflexive Banach spaces Q and Z, which will denote the

space of controls and the space for the adjoint state, respectively. We denote the
corresponding dual spaces by U∗, Q∗, and Z∗. Consider the following abstract linear
partial differential equation on Ω:

Au = Bq (2.1)

where we require the following properties:

Assumption 1. Assume that A : U ⊃ domA = W → Z∗ is a densely defined
linear operator and possesses a bounded inverse. Further let B : Q → Z∗ be a
continuous linear operator.

We will see later that continuous invertibility of A is equivalent to closedness and
bijectivity. The distinction between the state space U and the domain of definition
W of A allows us to consider our optimal control problem in a convenient topological
framework (the topology of U), while being able to model differential operators by A,
which are only defined on a dense subspace W .

To define an optimal control problem, we specify an objective functional J with
some basic regularity assumptions:

Assumption 2. Let J = J1 + J2. We assume that J1 : U → R and J2 :
Q → R are lower semi-continuous, convex and Gâteaux differentiable. In addition
let J1 be bounded from below and J2 be strictly convex. Assume that the derivatives
are uniformly bounded on bounded sets. This means that there exists a continuous
g : R+ → R+ such that ‖J ′

1(u)‖U∗ ≤ g(‖u‖U ) and ‖J ′
2(q)‖Q∗ ≤ g(‖q‖Q).
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We now consider the following minimization problem

min
Qad×W

J(q, u) = J1(u) + J2(q), (2.2a)

s.t. Au = Bq, (2.2b)

and |∇u(x)|2 ≤ ψ(x) onΩC (2.2c)

where, | · | is the euclidian norm in R
d, ψ ∈ C(ΩC) with ψ ≥ δ > 0 (δ ∈ R) and

Qad ⊂ Q closed and convex.
In order to ensure that there exists a solution we require that the following as-

sumption holds
Assumption 3. We assume that at least one of the following holds:

(1) Qad is bounded in Q.
(2) J2 is coercive on Q.

For the discussion of interior point methods for the gradient constraint we have
to require an additional property, which is of Slater type.

Assumption 4. Assume there exists a feasible control q̆ ∈ Qad, such that the
corresponding state ŭ given by Aŭ = Bq̆ is strictly feasible, that is, |∇ŭ|2 < ψ.

Remark 2.2. Slater conditions are a crucial aspect of state constrained optimal
control. The presence of a Slater point is fundamental for additional regularity of dual,
and ultimately of primal variables, results on well-posedness, and discretization error
estimates. Interior point methods require a Slater point by construction, while outer
regularization methods admit qualitative results without a Slater point, see, e.g., [20]
for a certain class of problems. However, also here Slater conditions are the key to
derive stronger results for a larger problem class, see, e.g., [22].

We state the following basic continuity result, whose proof can be found, e.g.,
in [29, Lemma A.1].

Lemma 2.1. Let U be a Banach space. An operator A : U ⊃ W → Z∗ has a
continuous inverse if and only if A is closed and bijective.

If Assumption 1 holds, then there exists a continuous “control-to-state” mapping

S : Q→ U, S := A−1B.

Using the Assumptions 1–4 it follows from standard arguments (coercivity, weak
seq. compactness, convexity) that (2.2) admits a unique solution (q, u) ∈ Qad ×W .

For the discussion of the adjoint operator A∗ of A we exploit density of W in U
and reflexivity of Z. A∗ possesses a domain of definition domA∗, given by

domA∗ = {z ∈ Z | ∃ cz : 〈Au, z〉Z∗,Z ≤ cz‖u‖U ∀u ∈ domA =W}.

Because W is dense in U for each z ∈ domA∗ the linear functional 〈A · , z〉Z∗,Z has
a unique continuous extension to a functional on the whole space U . This defines a
linear operator A∗ : Z ⊃ domA∗ → U∗ and it holds

〈u,A∗z〉U,U∗ = 〈Au, z〉Z∗,Z ∀u ∈ domA, z ∈ domA∗.

Lemma 2.2. The operator A∗ defined above has a continuous inverse, and it
holds

(

A−1
)∗

= (A∗)
−1
. (2.3)
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Proof. Since Z∗ is complete and A is surjective, we can apply [17, Theorem
II.3.13], which states that A∗ has a bounded inverse under these conditions. Hence,
both (A−1)∗ and (A∗)−1 exist, and by [17, Theorem II.3.9] they are equal.

2.1. Examples. Let us apply our abstract framework to optimal control prob-
lems with PDEs. First we consider two variants of modeling an elliptic partial differ-
ential operator of second order: via the strong form and via the weak form. It will
turn out that the strong form yields a more convenient representation of A∗ and is
thus preferable.

Example 2.1. [Second Order Elliptic PDE in Strong Form] Let ΩC = Ω ⊂ R
d,

U = C1(Ω) ∩ H1
0 (Ω), p > d, and Z = Lp

′

(Ω) with 1
p + 1

p′ = 1. Consider A = −∆

as a mapping from domA = W = W 2,p(Ω) ∩H1
0 (Ω) to Lp(Ω). This means that A is

a differential operator in strong form. We can write this as integral equation in the
following form:

〈Au, z〉Lp(Ω),Lp′ (Ω) =

∫

Ω

−∆uz dx ∀u ∈W, z ∈ Z.

Assume that the boundary of Ω ⊂ R
d is either of class C1,1 or that Ω ⊂ R

2 is
convex and has a polygonal boundary. Then there exists p with d < p < ∞ such that
A is an isomorphism from W onto Z∗, see, e.g., [16, Theorem 9.15] for the case of
a C1,1 boundary or [18] for the polygonal case. In particular, A has a continuous
inverse from Z∗ onto W . By Sobolev embedding W is continuously embedded into U
and thus A−1 can also be defined as a continuous mapping from Z∗ into U . Because
W is dense in U the requirements on A of Assumption 1 are fulfilled.

A simple choice for the control space is Qad = Q = Lp(Ω) = Z∗. Then B = Id is
a continuous operator. This corresponds to distributed control. As a second setting for
the control we may consider Q = R

n and fi ∈ Lp(Ω), i = 1 . . . n. Then the operator
B defined by Bq =

∑n
i=1 fiqi satisfies Assumption 1 on B.

In the case of distributed control a simple cost functional might be

J(q, u) = J1(u) + J2(q) =
1

2
‖u− ud‖2L2(Ω) +

1

p
‖q‖pLp(Ω).

with given ud ∈ L2(Ω), p > d. It is easily seen that J2 is coercive on Q. Thus
Assumption 3 is satisfied. By simple calculations Assumption 2 on J is verified.

Since the gradient bound ψ is assumed to be strictly positive, taking q̆ = 0 yields
the required Slater condition from Assumption 4.

The adjoint operator A∗ : Z ⊃ domA∗ → U∗ can be interpreted as a very weak
form of the Laplace operator, i.e.,

〈u,A∗z〉U,U∗ = 〈Au, z〉Z∗,Z =

∫

Ω

−∆uz dx ∀u ∈W, z ∈ domA∗.

Lemma 2.2 already yields the continuous invertibility of A∗.
Example 2.2. [Second Order Elliptic PDE in Weak Form] Let us discuss an

alternative approach to Example 2.1: The weak form of the “same” elliptic operator.
Usually one defines the differential operator A = −∆ : H1

0 (Ω) → H−1(Ω) by:

〈Au, z〉H−1(Ω),H1

0
(Ω) =

∫

Ω

∇uT∇z dx ∀ z ∈ H1
0 (Ω).
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Our aim is to redefine the spaces for this operator such that Assumption 1 holds. To
this end we have to restrict the image space from H−1(Ω) to Lp(Ω). Then the space
W is given by

W =

{

u ∈ H1
0

∣

∣

∣

∫

Ω

∇uT∇z dx ≤ cu‖z‖Lp′ ∀ z ∈ H1
0 (Ω)

}

.

Observe that the integral in this expression is not defined for all z ∈ Lp
′

(Ω), but only
for z ∈ H1

0 (Ω). However, if u ∈ W then by definition of W it follows, that Au has a
unique continuous extension to an element of Lp(Ω). It is given canonically by

〈Au, z〉Lp(Ω),Lp′ (Ω) = lim
zk∈H

1

0
(Ω),

zk→z inLp′ (Ω)

〈Au, zk〉H−1(Ω),H1

0
(Ω). (2.4)

Under the same regularity assumptions as in Example 2.1 we obtain that W ⊂ C1(Ω)
and ‖u‖C1(Ω) ≤ c‖Au‖Lp(Ω), thus Assumption 1 is fulfilled.

In spite of the complicated representation of A via (2.4), we may represent the
equation Au = f conveniently in the form

∫

Ω

∇uT∇ϕdx =

∫

Ω

fϕ dx ∀ϕ ∈ H1
0 (Ω) (2.5)

via density.
However, since the linear functional Au is defined in Lp(Ω) by continuous exten-

sion (2.4), the representation of the adjoint operator A∗ is quite cumbersome. For
z ∈ domA∗ ⊂ Lp

′

(Ω) it is given by

〈u,A∗z〉H1

0
(Ω),H−1(Ω) = lim

zk∈H
1

0
(Ω),

zk→z inLp′ (Ω)

〈Au, zk〉H−1(Ω),H1

0
(Ω) = lim

zk∈H
1

0
(Ω),

zk→z inLp′ (Ω)

∫

Ω

∇uT∇zk dx.

and has to be used in the adjoint PDE. In contrast to the weak formulation of the
primal equation (2.5), where the limit formulation for the test functions can be dropped
by density, now the limit formulation applies to elements of the space of solutions,
and thus cannot be neglected. Continuous invertibility of A∗, which follows from our
abstract considerations only applies to its correct representation. A naive formulation
of the adjoint PDE would yield wrong results. This is the reason why we prefer the
strong formulation for optimal control problems of second order equations with gradient
bounds.

Example 2.3. [Fourth Order Elliptic PDE] As a different example we consider
once again ΩC = Ω but choose different spaces. Let U = {v ∈ C1(Ω) | v(x) =

|∇v(x)| = 0 ∀x ∈ ∂Ω}, Z = W 2,p′

0 (Ω). We consider the biharmonic operator A = ∆2

as a mapping from domA =W =W 2,p
0 (Ω) to Z∗ =W−2,p(Ω) with 1

p +
1
p′ = 1.

Assume that the domain Ω ⊂ R
2 is convex with polygonal boundary, then it is

well known [4, Theorem 2] that A has a continuous inverse from Z∗ onto W . As it
has already been remarked for d < p <∞ the embedding from W into U exists and is
dense.

Note that in this case both dual and primal operator can be represented by

〈Au, z〉Z∗,Z = 〈u,A∗z〉U,U∗ =

∫

Ω

∆u∆z dx ∀u ∈W 2,p
0 (Ω), z ∈W 2,p′

0 (Ω).

By the choice Q = L2(Ω) with B the embedding from L2(Ω) into W−2,p(Ω) we
see that Assumption 1 is fulfilled.
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3. Barrier Functional and its Subdifferentiability. In this section we are
concerned with the analysis of barrier functionals for the problem under consideration.
We proceed as in [29]:

Definition 3.1. For r ≥ 1 and µ > 0 we define barrier functions l of order r by

l(v;µ; r) : R+ → R,

l(v;µ; r) :=

{

−µ ln(v) r = 1,
µr

(r−1)vr−1 r > 1.

We extend their domain of definition to R by setting l(v;µ; r) = ∞ for x ≤ 0. We
denote the pointwise derivative of l(v;µ; r) by l′(v;µ; r) if v > 0. This yields

l′(v;µ; r) =
−µr
vr

.

With this we define a barrier functional b for the constraint v ≥ 0 by:

b( · ;µ; r) : C(ΩC) → R,

v 7→
∫

ΩC

l(v(x);µ; r) dx.

Its formal derivative b′(v, µ; r) ∈ C(ΩC)
∗, is defined as

〈b′(v;µ; r), δv〉 :=
∫

ΩC

l′(v(x);µ; r)δv(x) dx

if the right hand side exists.
Obviously, if 0 < ε ≤ v ∈ C(ΩC), then b is differentiable with respect to v, and b′

is the Fréchet derivative of b. If v(x) = 0, for some x ∈ C(ΩC), then the situation is
more involved, and techniques of subdifferential calculus have to be applied.

In contrast to the case of state constraints, we may not use ψ = 0 to ease notation.
This is due to the fact that in this case u = 0 would be the only admissible state.
Therefore we introduce the following shifted barrier functional.

Definition 3.2. We define the barrier functional for the constraint |∇u|2 ≤ ψ
on a compact set ΩC ⊆ Ω by

bψ( · ;µ; r) : C1(ΩC) → R,

u 7→ bψ(u;µ; r) := b(ψ − |∇u|2;µ; r). (3.1)

In several cases we are only interested in a barrier functional of a fixed given order
r, and sometimes even for only one fixed value of µ, in those cases we write b(·;µ) or
even b(·) if no confusion can occur.

Lemma 3.3. The barrier functional bψ defined in (3.1) is well defined, convex,
and lower-semicontinuous.

Proof. By [29, Proposition 4.3] the outer function b(·;µ; r) is well defined and lower
semi-continuous. Since the inner function ψ−|∇u|2 is well defined and continuous on
U , the composition of both functions is well defined and lower semi-continuous.

Moreover, we know that b(·;µ; r) is convex and monotonically decreasing. Further,
the mapping T (u) := ψ − |∇u|2 is pointwise concave. With these properties we can



Barrier Methods for Gradient State Constraints 7

proof convexity of bψ = b ◦ T by the following computation which holds for every x
in ΩC :

l
(

T (λu+(1−λ)ũ)
)

(x) ≤ l
(

λT (u)+(1−λ)T (ũ)
)

(x) ≤ λl
(

T (u)
)

(x)+(1−λ)l
(

T (ũ)
)

(x).

By monotonicity of the integral we obtain that bψ is convex.
We approach subdifferentiability of bψ = b ◦ (ψ − |∇ · |2) via the following chain

rule.
Lemma 3.4. Let U , V be Banach spaces, f : V → R be a convex, lower-

semicontinuous function, and T : U → V a continuously differentiable mapping with
first derivative T ′. Assume that the composite mapping f ◦ T is also convex.

Let u be given and let T ′(u) be bounded. Assume that there is ŭ ∈ U , such that f
is bounded above in a neighbourhood of T (u) + T ′(u)ŭ. Then

∂(f ◦ T )(u) = (T ′(u))∗∂f(T (u)). (3.2)

Proof. This is a slight extension of the well known chain rule of convex analysis
(cf. [14, Prop. I.5.7]), which is, however, hard to find in the literature. We thus derive
this result from a more general theorem in non-smooth analysis due to Clarke and
Rockafellar (cf. [11, Thm. 2.9.9] or [25, Thm. 3]). Although the construction of the
corresponding generalized differential is rather complicated in general, it reduces to
the convex subdifferential in the case of convex functions (cf. [26, Thm. 5]).

First of all, we may assume that f(T (u)) is finite. Otherwise, ∂(f ◦ T )(u) =
∂(f(T (u)) = ∅ holds trivially, because ∂g(u) := ∅ in case g(u) = +∞ for every convex
function g.

Now, we may argue as in [25, Cor. 1], which shows that the chain rule [25, Thm.
3] can be applied to show our assertion under the additional assumption that T is
linear. However, inspection of its (short) proof shows that the same argumentation is
still true in the case that T is “strictly differentiable” at u and f ◦T is convex, as long
as ŭ exists that satisfies our assumptions. Now the Corollary subsequent to [11, Prop.
2.2.1] asserts that “strict differentiability” is implied by continuous differentiability,
and our assertion follows.

Remark 3.1. Lemma 3.3 and Lemma 3.4 are also useful in the context of point-
wise state constraints of the form g(y(x), x) ≤ 0, if g is convex and differentiable in
y.

With the help of this lemma we can now characterize the subdifferential for barrier
functionals with respect to gradient bounds in terms of the known subdifferential of
a barrier functional in C(ΩC), see [29].

Proposition 3.5. Assume that ψ ≥ δ > 0. Define

bψ : C1(ΩC) → R

u 7→ b(ψ − |∇u|2)

as in Definition 3.2. Then the subdifferential ∂bψ(u) has the following representation:

∂bψ(u) = (−2∇uT∇)∗∂b(ψ − |∇u|2). (3.3)

This means, m̃ ∈ ∂bψ(u), if and only if there is m ∈ ∂b(ψ − |∇u|2), such that

〈δu, m̃〉C1(ΩC),C1(ΩC)∗ = −2〈∇uT∇δu,m〉C(ΩC),C(ΩC)∗ ∀δu ∈ C1(ΩC).
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If u is strictly feasible, then m = b′(ψ − |∇u|2).
Proof. Let T : C1(ΩC) → C(ΩC) be defined by T (u) := ψ−|∇u|2. Obviously, the

mapping ψ − |∇u|2 : C1(ΩC) → C(ΩC) is continuously differentiable with bounded
derivative (T ′(u)δu)(x) = −2(∇u(x))T∇δu(x).

We are going to apply Lemma 3.4 to the function bψ : U → R, bψ(u) = b ◦ T .
By [29, Proposition 4.3], b is convex and lower semi-continuous and by Lemma 3.3 bψ is
convex, too. Setting ŭ := −0.5u, we have T ′(u)ŭ = |∇u|2, and ṽ := T (u)+T ′(u)ŭ = ψ.
Since ψ ≥ δ > 0, b is bounded from above in a C(ΩC)-neighbourhood of ṽ. Hence,
Lemma 3.4 can be applied and yields our representation formula (3.3). Finally [29,
Prop. 4.6] shows that ∂b(v) = {b′(v)} if v is strictly feasible.

The barrier functional bψ can also be analyzed on closed subspaces Ũ of C1(ΩC).

To this end let E : Ũ → C1(ΩC) be the continuous embedding operator. Then its
adjoint E∗ : C1(ΩC)

∗ → Ũ∗ is the restriction operator for linear functionals. If ŭ in
Assumption 4 can be chosen from Ũ , then the chain-rule of convex analysis applied
to bψ ◦ E yields a characterization of the subdifferential of the restriction of bψ to Ũ
as restriction of the subdifferential:

∂(bψ ◦ E)(u) = E∗∂bψ(Eu).

Closed subspaces of C1(ΩC) may for example be spaces that incorporate Dirichlet
boundary conditions on ΩC ∩ Ω or finite dimensional subspaces.

4. Minimizers of Barrier Problems. With the preparations made in the pre-
vious sections we will now show that there exists a unique solution for the barrier
problem, and later on some first order necessary conditions that are fulfilled by these.

Theorem 4.1. (Existence of Solutions to Barrier Problems)
Let Assumptions 1–4 be fulfilled. Then the Problem

min Jµ(q, u) := J(q, u) + bψ(u;µ),

s.t. Au = Bq
(4.1)

admits a unique minimizer (qµ, uµ). Moreover uµ is strictly feasible almost everywhere
in ΩC , and for every µ0 > 0 the solutions (qµ, uµ) ∈ Q ×W of (4.1) are uniformly
bounded on (0, µ0].

Proof. By continuity of S = A−1B (Lemma 2.1) we may eliminate u and write
J̃µ(q) := Jµ(q, Sq). Using Lemma 3.3 and Assumption 1 it is easy to see that Jµ(q)
is a strictly convex, lower semi-continuous functional on the reflexive space Q. By
Assumption 4 Jµ(q̆, ŭ) <∞. Further, Jµ is coercive by Assumption 3, by the required
lower bound for J1, and because bψ is bounded from below, since ψ is bounded above.
This allows to apply standard results on the existence and uniqueness of minimizers
(cf., e.g., [14]). Since Jµ(qµ, uµ) < ∞ it follows that u is strictly feasible almost
everywhere in ΩC . To prove our final assertion, we note that due to Lemma 2.1 and
Assumption 1 it is sufficient to show that qµ is uniformly bounded. To see this we
note that, cf. [29],

Jµ(qµ, uµ) ≤ Jµ(qµ0
, uµ0

) ≤ Jµ0
(qµ0

, uµ0
).

From J(qµ, uµ) ≤ Jµ(qµ, uµ) together with Assumption 3 we obtain, that qµ is
bounded, which concludes the proof.

Usually, ifW ⊂ C1(ΩC) the state enjoys the additional regularityW ⊂ C1,β(ΩC) ⊂
C1(ΩC). This means the gradients are even Hölder continuous of order β. Then we
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obtain for a sufficiently high order r of the barrier method that the state is in fact
strictly feasible everywhere in ΩC , as the following theorem shows.

Theorem 4.2. Let ΩC ⊂ R
d be compact satisfying a cone property (cf. [1, Def.

IV.4.3]) and for some β ∈ (0, 1) let ψ ∈ C0,β(ΩC) be given. Let Assumptions 1–4 be
satisfied. If the state has the additional regularity uµ ∈ C1,β(ΩC), then for r − 1 > d

β
the state uµ is strictly feasible in ΩC .

Proof. By Theorem 4.1 we obtain 0 ≤ ψ − |∇uµ|2 ∈ C0,β(ΩC). From [29,
Lemma 7.1] we obtain that therefore (ψ − |∇uµ|2)−1 ∈ C(ΩC) which concludes the
proof.

Remark 4.1. The proof of [29, Lemma 7.1] uses a radial integral technique, which
exploits smoothness of y to pass from L1-estimates to L∞-estimates. Dependence
on the spatial dimension enters due to the integral transformation formula for polar
coordinates.

Remark 4.2. Concerning our examples 2.1- 2.3 the existence of such a β follows
directly as W 2,p(Ω) can be continuously embedded into C1,β(Ω) provided 0 ≤ β <
1− d

p .
We are now prepared to derive first order necessary conditions for the minimizer

of the barrier problem (4.1).
Theorem 4.3. Let the Assumptions 1–4 be fulfilled. Then (qµ, uµ) ∈ Qad × U

is a solution to (4.1) if and only if there exist mµ ∈ ∂b(ψ − |∇uµ|2) ⊂ C(ΩC)
∗ and

zµ ∈ Z, q∗µ ∈ Q∗ such that the following holds:

Auµ = Bqµ in Z∗ (4.2a)

A∗zµ = J ′
1(uµ) + (−2(∇uµ)T∇)∗mµ in U∗ (4.2b)

J ′
2(qµ) = −B∗zµ − q∗µ in Q∗ (4.2c)

〈q − qµ, q
∗
µ〉Q,Q∗ ≤ 0 ∀ q ∈ Qad (4.2d)

Proof. We consider the following minimization problem where we omit the de-
pendence on the parameter µ:

min
q∈Q

F (q) = χQad(q) + jµ(q) := χQad(q) + Jµ(q, Sq) (4.3)

where χQad is the indicator function for the admissible set of the controls, and S
is the control to state mapping defined by (2.2b). Clearly (qµ, uµ) = (qµ, Sqµ) is a
solution to (4.1) if and only if qµ is a solution to (4.3), which is in turn equivalent to
0 ∈ ∂F (qµ). In order to utilize this we will split the subdifferential by the sum-rule
of convex analysis:

∂F (qµ) = ∂(χQad)(qµ) + ∂jµ(qµ). (4.4)

For its application note that Assumption 4 asserts the existence of a point

q̆ ∈ domχQad ∩ dom jµ

such that jµ is continuous in q̆. In addition the function χQad is convex and lower
semicontinuous, thus it coincides with its “Γ-regularization” [14, Chapter I, Prop.
3.1]. We can therefore apply the sum-rule of convex analysis, cf. [14, Chapter I, Prop.
5.6] to obtain (4.4).
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Since j defined by j(q) := J(q, Sq) is continuous in qµ we obtain by the same
argument that:

∂jµ(qµ) = ∂j(qµ) + ∂(bψ ◦ S)(qµ)

where we recall the definition bψ(u) = b(ψ − |∇u|2). Now we note that

j(q) = J ◦ (1, S)(q)

with the linear mapping

(1, S) : Q→ Q× U, q 7→ (q, Sq).

Together with Assumption 4 we are able to apply the linear chain rule and obtain

∂j(qµ) = (1, S∗)∂J(qµ, uµ),

∂(bψ ◦ S)(qµ) = S∗∂bψ(Sqµ).

Inserting the representation for the subdifferential of the barrier function bψ in Propo-
sition 3.5 our computations have shown so far that

0 ∈ ∂(χQad)(qµ) + (1, S∗)∂J(qµ, uµ) + S∗(−2(∇uµ)T∇)∗∂b(ψ − |∇uµ|2) (4.5)

is equivalent to (qµ, uµ) being a solution to (4.1). Since the cost functional is differ-
entiable we obtain, cf. [14, Chapter I, Prop. 5.3]:

∂J(qµ, uµ) = {J ′
1(uµ) + J ′

2(qµ)}.

Equation (4.5) means there exist q∗µ ∈ ∂χQad(qµ), and mµ ∈ ∂b(ψ− |∇uµ|2) such
that

0 = q∗µ + J ′
2(qµ) + S∗

(

J ′
1(uµ) + (−2(∇uµ)T∇)∗mµ

)

∈ Q∗. (4.6)

Note that S∗ = (A−1B)∗ = B∗(A−1)∗ = B∗(A∗)−1, where A∗ : Z ⊃ domA∗ → U∗

is well defined with continuous inverse due to Lemma 2.2. Define

zµ = (A∗)−1
(

J ′
1(uµ) + (−2(∇uµ)T∇)∗mµ

)

. (4.7)

Then zµ ∈ domA∗ ⊂ Z and satisfies (4.2b) by definition. Equation (4.2c) now follows
from (4.6). Further note that q∗µ fulfills, see, e.g., [14, Chapter I, Prop. 5.1]

sup
q∈Qad

〈q, q∗µ〉Q,Q∗ = 〈qµ, q∗µ〉Q,Q∗ (4.8)

which is equivalent to (4.2d).
Example 4.1. Let us apply our abstract results to Example 2.1 in the case of

distributed control (B = Id). Using the notation from there the first order optimality
conditions have the following form. Let (qµ, uµ) be a solution to (4.1), then there
exists zµ ∈ Z, mµ ∈ ∂b(ψ − |∇uµ|2;µ) such that:

∫

Ω

−∆uµ ϕdx =

∫

Ω

qµϕdx ∀ϕ ∈ Z, (4.9a)

∫

Ω

−∆ϕzµ dx =

∫

Ω

(uµ − ud)ϕdx− 2

∫

Ω

(∇uµ)T∇ϕdmµ ∀ϕ ∈W, (4.9b)

|qµ|p−2qµ = −zµ a.e. in Ω. (4.9c)
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For a discussion of the first two equations and in particular the representation of A
and A∗ we refer to Example 2.1. The barrier gradient mµ is an element of ∂b(uµ;µ; r),
and a measure in general. If uµ is strictly feasible, which can usually be guaranteed
a priori by a proper choice of the order r, then mµ = b′(y;µ; r) and thus a function,
cf. [29, Prop. 4.6].

Equation 4.9c holds pointwise almost everywhere since it holds in Lp(Ω). The
multiplier q∗µ does not appear due to the fact that Qad = Q.

After having studied the necessary optimality conditions we will now discuss the
behavior of the dual variables. The hard part is showing the boundedness of the
measure obtained form the subdifferential of the barrier functional.

Theorem 4.4. Let the assumptions of Theorem 4.3 be fulfilled. Then for each
µ0 > 0

sup
µ∈(0,µ0]

‖mµ‖C(ΩC)∗ ≤ C.

Proof. Let (qµ, uµ) be the solution to (4.1) and (q̆, ŭ) be a Slater point, e.g.,
let ψ − |∇ŭ|2 ≥ τ > 0. Then, following [29], we multiply (4.2b) with δu = uµ − ŭ
and (4.2c) with δq = qµ − q̆ and obtain

0 = 〈δu,−A∗zµ + J ′
1(uµ) + (−2(∇uµ)T∇)∗mµ〉U,U∗ + 〈δq, J ′

2(qµ) +B∗zµ + q∗µ〉Q,Q∗

= 〈δu, J ′
1(uµ) + (−2(∇uµ)T∇)∗mµ〉U,U∗ + 〈δq, J ′

2(qµ) + q∗µ〉Q,Q∗

+ 〈Aδu−Bδq,−zµ〉Z∗,Z .

As (δq, δu) fulfills the state equation (2.2b) this simplifies to

0 = 〈δu, J ′
1(uµ)〉U,U∗ + 〈δq, J ′

2(qµ)〉Q,Q∗

− 2〈(∇uµ)T∇δu,mµ〉C(ΩC),C(ΩC)∗ + 〈δq, q∗µ〉Q,Q∗ .

(4.10)

From the uniform boundedness of the primal variable, see Theorem 4.1 together with
Assumption 2, we obtain that

|〈δu, J ′
1(uµ)〉U,U∗ + 〈δq, J ′

2(qµ)〉Q,Q∗ | ≤ C

with a constant C independent of µ. Inserting this estimate into (4.10) yields

| − 2〈(∇uµ)T∇δu,mµ〉C(ΩC),C(ΩC)∗ + 〈δq, q∗µ〉Q,Q∗ | ≤ C. (4.11)

We will split this into the sum of the absolute values. To do so we will show that
both terms have essentially the same sign. First, we define the ‘almost’ active set

A = {x ∈ ΩC |ψ − |∇uµ|2 ≤ 0.5τ},

and denote by m|S for a measurable subset of S ⊂ ΩC the restriction of the measure
m to this set. This is motivated by [29, Corollary 4.7] which implies that mµ|ΩC\A

has a representation as a function on ΩC \ A and

sup
µ∈(0,µ0]

‖mµ|ΩC\A‖L1(ΩC\A) ≤ C. (4.12)

Then

|〈(∇uµ)T∇δu,mµ|ΩC\A〉C(ΩC),C(ΩC)∗ |
≤ ‖mµ|ΩC\A‖L1(ΩC\A)∗‖(∇uµ)T∇δu‖C(ΩC) ≤ C.

(4.13)
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Thus it remains to take a look at the behavior of 〈mµ|A, (∇uµ)T∇δu〉C(ΩC)∗,C(ΩC).

We will now show that 0 < c ≤ (∇uµ)T∇δu holds on A. For this we apply Young’s-
inequality and obtain

2|(∇uµ)T∇ŭ| ≤ |∇uµ|2 + |∇ŭ|2 ≤ |∇uµ|2 + ψ − τ

or

τ − ψ − |∇uµ|2 ≤ −2|(∇uµ)T∇ŭ|.
This leads to the following pointwise estimate on A:

0.25τ ≤ 0.5(|∇uµ|2 − ψ) + 0.5τ

≤ 0.5(τ − ψ − |∇uµ|2) + |∇uµ|2

≤ |∇uµ|2 − (∇uµ)T∇ŭ = (∇uµ)T∇δu.
From [29, Prop. 4.6] we obtain that mµ ≤ 0 as a measure thus leading to

−2〈(∇uµ)T∇δu,mµ|A〉C(ΩC),C(ΩC)∗ ≥ 0.

Now we take a look on (4.2d) to see that 〈qµ − q̆, q∗µ〉Q,Q∗ ≥ 0. Together with (4.13)
we obtain from (4.11) that

|〈(∇uµ)T∇δu,mµ|A〉C(ΩC),C(ΩC)∗ | ≤ C.

Finally we note that on the compact set A for any non-positive measure σ and any
positive continuous function f the estimate

∫

A

f dσ ≤ min
x∈A

f(x)

∫

A

1 dσ ≤ 0

holds. Since mµ ≤ 0 is non-positive and (∇uµ)T∇δu is positive we conclude from this
estimate:

〈(∇uµ)T∇δu,mµ|A〉C(ΩC),C(ΩC)∗ ≤ 〈(∇uµ)T∇δu,mµ|A〉C(A),C(A)∗

≤ min
x∈A

(

(∇uµ(x))T∇δu(x)
)

〈1,mµ|A〉C(A),C(A)∗

≤ −τ
4
‖mµ‖C(A)∗ .

This implies

‖mµ‖C(A)∗ ≤ 4

τ
|〈(∇uµ)T∇δu,mµ|A〉C(ΩC),C(ΩC)∗ | ≤ C

and together with (4.12) completes the proof.
Corollary 4.5. Under the Assumptions 1–4 the following holds for every given

µ0 > 0:

sup
µ∈(0,µ0]

‖zµ‖Z ≤ C,

sup
µ∈(0,µ0]

‖q∗µ‖Q∗ ≤ C.

Proof. First we note that the right hand side of (4.2b) is bounded due to As-
sumption 2, boundedness of uµ, mµ, and continuity of ((∇uµ)T∇)∗ : C(ΩC)

∗ → U∗.
The bound for zµ follows from the boundedness of the right hand side of (4.2b) and
continuity of (A∗)−1. The bound for q∗µ then follows from the bound on zµ and qµ
using (4.2c) and Assumption 2 and continuity of B∗.
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5. Properties of the Central Path. We will now show convergence of the cost
functional with rate µ.

Theorem 5.1. Let Assumptions 1–4 be fulfilled, and (qµ, uµ) be a solution of the
barrier problem (4.1) for µ > 0. Then the following holds for the minimizer (q, u)
of (2.2):

J(qµ, uµ) ≤ J(q, u) + Cµ. (5.1)

Proof. The proof follows the lines of [29, Lemma 6.1], however since we consider
nonlinear constraints on the gradient of the states we have to modify the argumenta-
tion concerning the multiplier coming from the subdifferential of the barrier functional.

From the proof of Theorem 4.3 together with the relation

∂b(ψ − |∇uµ|2;µ) = µr∂b(ψ − |∇uµ|2; 1),

cf. [14, Chaper I, (5.21)], we obtain that there exists m ∈ ∂b(ψ − |∇uµ|2; 1) and
ϕ ∈ ∂χQad(qµ) + ∂j(qµ) = ∂(χQad + j)(qµ) such that:

ϕ− 2µrS∗((∇uµ)T∇)∗m = 0.

This shows that

2µrS∗((∇uµ)T∇)∗m ∈ ∂(χQad + j)(qµ).

From convexity of χQad + j we obtain that for every l ∈ ∂(χQad + j)(qµ) the following
holds:

j(qµ) ≤ j(q) + 〈l, qµ − q〉Q∗,Q.

Applied to 2µrS∗((∇uµ)T∇)∗m we obtain:

J(qµ, uµ) ≤ J(q, u) + 2µr〈m, (∇uµ)T∇(uµ − u)〉C(ΩC)∗,C(ΩC).

Since b is monotonically decreasing, the measure m is negative, cf. [29, Prop. 4.6].
Thus we can estimate further

2µr〈m, (∇uµ)T∇(uµ − u)〉C(ΩC)∗,C(ΩC) ≤ 2µr〈m|ΩS
, (∇uµ)T∇(uµ − u)〉C(ΩC)∗,C(ΩC)

where we define ΩS := {x ∈ ΩC | (∇uµ)T∇(uµ − u) < 0}. From the Cauchy-Schwarz
inequality it follows that |∇uµ(x)| < |∇u(x)| ≤ ψ(x) on ΩS and thus ΩS ⊂ {x ∈
ΩC | |∇uµ|2 < ψ}. Hence we obtain from [29, Prop. 4.6.]

2µr〈m|ΩS
,∇uµ∇(uµ−u)〉C(ΩC)∗,C(ΩC) = −2

∫

ΩS

µr

(ψ − |∇uµ|2)r
(∇uµ)T∇(uµ−u) dx.

From (∇uµ)T∇u ≤ |∇uµ| |∇u| ≤ ψ we see that

−(∇uµ)T∇(uµ − u)

ψ − |∇uµ|2
=

(∇uµ)T∇u− |∇uµ|2
ψ − |∇uµ|2

≤ 1

and thus

2µr〈m|ΩS
, (∇uµ)T∇(uµ − u)〉C(ΩC)∗,C(ΩC) ≤ 2µ

∫

ΩS

µr−1

(ψ − |∇uµ|2)r−1
dx. (5.2)
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From Theorem 4.4 and boundedness of the domain ΩC we obtain for the function
f := µ/(ψ − |∇uµ|2) that

‖fr−1‖1/(r−1)

L1(ΩC)
= ‖f‖Lr−1(ΩC) ≤ C ‖f‖Lr(ΩC) = C ‖fr‖1/r

L1(ΩC)
≤ C.

Thus the integral on the right hand side of (5.2) is bounded independent of µ. Hence
the assertion follows.

Corollary 5.2. Let µ > 0, (qµ, uµ) be a solution to the barrier problem (4.1)
and (q, u) be the solution to the minimization problem (2.2). Further assume that
there exist c > 0, p ≥ 2 and a norm ‖ · ‖ such that

c‖q1 − q2‖p ≤ J2(q1) + J2(q2)− 2J2

(

q1 + q2
2

)

.

Then the following estimate holds:

‖qµ − q‖ = O(µ1/p). (5.3)

Proof. By assumption and convexity of J1 the following proves the assertion

c‖qµ − q‖p ≤ J2(qµ) + J2(q)− 2J2 ((qµ + q)/2)

≤ J(qµ, uµ) + J(q, u)− 2J((qµ + q)/2, (uµ + u)/2)

≤ J(qµ, uµ) + J(q, u)− 2J(q, u) = O(µ).

Remark 5.1. By an analogous assumption on J1 a similar result for the state
uµ can be obtained. In addition, if ‖ · ‖ is stronger than ‖ · ‖Q the convergence of uµ
in U (with the same rate O(µ1/p)) follows by continuity of S.

Example 5.1. We finally return to Example 2.1. We apply the Clarkson in-
equality [12, Theorem 2 (3)] for Lp-spaces with p > 2, which yields

∥

∥

∥

∥

f − g

2

∥

∥

∥

∥

p

Lp(Ω)

≤ 1

2
‖f‖pLp(Ω) +

1

2
‖g‖pLp(Ω) −

∥

∥

∥

∥

f + g

2

∥

∥

∥

∥

p

Lp(Ω)

from this we see that ‖q‖pLp(Ω) matches the assumption of Theorem 5.2.

With the same techniques as in Theorem 5.1 it is possible to show for µ0 > µ > 0
that Jµ(qµ0

, uµ0
) ≤ Jµ(qµ, uµ)+C(µ0−µ). Then continuity of the central path follows

via Theorem 5.2.

6. Numerical Results. Here we will demonstrate our findings on two numerical
examples corresponding to Example 2.1 and Example 2.3. First we will discuss an
example already considered in the literature. Then we will consider a generic optimal
control problem with a fourth order PDE. The results are computed using the Finite
Element Toolkit Gascoigne [15] and the Optimization Toolbox RoDoBo [27]. In both
examples we choose the order of the barrier method r = 6.

6.0.1. Example 1. First we will consider an example corresponding to Exam-
ple 2.1. For this purpose we consider an example from [13] with known solution. The
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problem reads as follows:

Minimize
1

2
‖u − ud ‖2L2(Ω) +

α

2
‖q‖2L2(Ω)

s.t. −∆u = q + f inΩ,

u = 0 on ∂Ω,

s.t. |∇u|2 ≤ 0.25 inΩ,

−2 ≤ q ≤ 2 a.e. inΩ.

Where α = 1, the domain Ω = {x ∈ R
2 | |x| < 2} and the data of the problem is

f =

{

2 |x| ≤ 1,

0 otherwise,

and

ud =

{

0.25 + 0.5 ln(2)− 0.25|x|2 |x| ≤ 1,

0.5 ln(2)− 0.5 ln(|x|) otherwise.
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Fig. 6.1. Error in the cost functional vs. barrier parameter µ on different meshes

The exact solution satisfies u = ud and q =

{

−1 |x| ≤ 1,

0 otherwise,
and the functional

value is given as J(q, u) = π
2 .

For the computation we have chosen an initial µ = 1.0 and then successively
reduced µ by

√
2 until µ < 10−4. The barrier subproblems were solved by a Newton’s

method in the control space which has been globalized using a line search technique,
as provided by RoDoBo. In our test problems, strictly feasible starting values were
easy to obtain by taking q̆ = −f .
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In Figure 6.1 we have depicted the convergence of the functional value. Here we
can see, that after an initial phase the functional value is converging with an approxi-
mate order O(µ3/2) until it reaches the discretization accuracy. The intermediate kink
in the transition between regularization and discretization error is due to cancellation
between the two error components.
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(a) L2-Error of the control variable vs. barrier
parameter µ
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(b) L2-Error of the state variable vs. barrier
parameter µ

Fig. 6.2. Convergence behavior of the primal variables on different meshes

In Figure 6.2 we can see the convergence behavior of the primal variables. We see
that the control variable is in fact converging with order µ instead of the predicted√
µ, see Figure 6.2(a). The state variable is converging with approximately the same

speed as the functional value, namely of order O(µ3/2), where we can see once again
the cancellation in the transition between regularization and discretization error.

This rate of convergence exceeds our theoretical findings. It is an interesting
question, whether this is an exceptional case, caused by the specific construction of
the example, or if our theory can be refined. However, in the next example we will
see the predicted behavior.

6.0.2. Example 2. We will now consider an example corresponding to Exam-
ple 2.3. Hence we consider the following optimization problem

Minimize
1

2
‖u− ud‖2L2 +

α

2
‖q‖2L2

s.t. ∆2u = q inΩ,

u = ∂nu = 0 on ∂Ω,

s.t. |∇u|2 ≤ 0.04 inΩ.

We choose α = 10−3 the domain Ω = (−1, 1)2 ⊂ R
2 and

ud = (x2 − 1)2(y2 − 1)2.

For the discretization of the state equation we consider a mixed finite element method,
e.g we consider σ = ∇u as an independent variable. Its continuous formulation is for
given q ∈ L2(Ω) find (σ, u) ∈ H1(Ω)×H1

0 (Ω) such that:

(σ, ϕ) + (∇u,∇ϕ) = 0 ∀ ϕ ∈ H1(Ω)

(∇σ,∇ϕ) = (q, ϕ) ∀ ϕ ∈ H1
0 (Ω)
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which is discretized using conforming Q1 finite elements. For details on this dis-
cretization see [10]. In Figure 6.3 we made a series of computations on different
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0.0001 0.001 0.01 0.1

E
rr
or

µ
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N = 81
N = 289
N = 1089

O(µ)

Fig. 6.3. Error in the cost functional vs. barrier parameter µ on different meshes

globally refined meshes, where N denotes the number of nodes in the mesh. For these
computations the barrier parameter µ was initialized as 0.03 on each mesh and then
successively decreased by a factor of

√
2 until it reached a value lower than 10−4. The

choice of the initial µ was motivated by the previous example where an initial phase
with low convergence was observed.

We can clearly see the predicted order of convergence of the cost functional. As
in this example the exact solution is unknown we used a reference value obtained on
a mesh with 106 nodes and a value µ = 10−6. The approximate functional value is
0.286619. Here we can clearly see the predicted oder of convergence namely O(µ).
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contraintes sur l‘état, in Nonlinear Partial Differential Equations and their Applications 8,
H. Brezzis and J. Lions, eds., Longman, New York, 1988, pp. 69–86.

[6] E. Casas and L. A. Fernández, Corrigendum: Optimal control of semilinear elliptic equations

with pointwise constraints on the gradient of the state, Appl. Math. Optim., 28 (1993),
pp. 337–339.

[7] , Optimal control of semilinear elliptic equations with pointwise constraints on the gra-

dient of the state, Appl. Math. Optim., 27 (1993), pp. 35–56.
[8] E. Casas, M. Mateos, and J.-P. Raymond, Pontryagin’s principle for the control of parabolic

equations with gradient state constraints, Nonlinear Anal., 46 (2001), pp. 933–956.
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