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AN OPTIMAL CONTROL PROBLEM GOVERNED BY A REGULARIZED
PHASE-FIELD FRACTURE PROPAGATION MODEL

I. NEITZEL, T. WICK, AND W. WOLLNER

Abstract. This paper is concerned with an optimal control problem governed by a fracture model
using a phase-field technique. To avoid the non-differentiability due to the irreversibility constraint on
the fracture growth, the phase-field fracture model is relaxed using a penalization approach. Existence
of a solution to the penalized fracture model is shown and existence of at least one solution for the
regularized optimal control problem is established. Moreover, the linearized fracture model is considered
and used to establish first order necessary conditions as well as to discuss QP-approximations to the
nonlinear optimization problem. A numerical example suggests that these can be used to obtain a fast
convergent algorithm.

1. Introduction

This paper presents an optimal control formulation for fracture propagation problems using phase-field
methods. Presently, phase-field approaches for fracture propagation are subject of intensive research in
both mathematical theory and applications. Based on variational principles, they provide an elegant
way to approximate lower-dimensional surfaces and discontinuities. Rewriting Griffith’s model [21] for
brittle fracture in terms of a variational formulation was first done in [17]. Later, these concepts have
been complemented with numerical examples [12] and well-posedness results including fractures with
linear [18] and nonlinear elasticity [31]. A summary of the state-of-the-art has been compiled in [13].
In [35, 36], the authors refined modeling and material law assumptions to formulate an incremental
thermodynamically consistent phase-field model for fracture propagation.

With regard to numerical analysis and computational methods important advances have been made
first in [12], which was later supplemented with an analysis of the solution algorithm [11]; for a complete
proof of that algorithm, we also refer to [14]. For a general Ambrosio-Tortorelli functional, numerical
analysis was done in a second paper by the same authors [15]. Recent results and new features of this
solution algorithm have been presented in [32]. Parameter studies and a slight re-interpretation of the
original model were performed in [30]. A solution approach using shape optimization has been presented
in [1] and phase-field models for structural optimization are discussed in [8]. Sophisticated examples
and benchmarks from mechanical engineering, using the refined phase-field modeling, have been studied
in [2, 9, 10, 23, 35, 36, 43]. Recent modeling and numerical studies by adding non-homogeneous traction
forces acting on the fracture surface were conducted in [40,41,45].

Following the model proposed in [35,36], we consider a time discrete, but spatially continuous phase-
field approach to model the growth of the fracture over time. The irreversibility of the fracture growth
induces an obstacle like problem in each time-point. The novelty of this paper is the formulation and
analysis of an optimal control problem subject to such a fracture model.

Due to the irreversibility constraint on the fracture growth, this optimization problems become math-
ematical programs with complementarity constraints (MPCC), see, e.g., [7]. Due to the complementarity
condition, standard constraint qualifications for nonlinear programs, like [42] or [47] can not be satisfied.
Hence a zoo of different stationarity concepts has been introduced. For strong-stationarity, see, e.g., [38].
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Unfortunately, in general, such a system is only necessary if a sufficiently large set of controls is admissi-
ble in the optimization problem, see, e.g., [44]. In all other cases, weaker concepts need to be considered
to obtain stationarity systems that can sometimes be obtained as limits of relaxed formulations, see for
instance [25–27]. For the error due to a finite element discretization of the obstacle problem, we refer
to [34]. In contrast to the control of an obstacle problem additional difficulties arise due to the coupling
of the phase-field variable with the elasticity problem.

To alleviate the difficulties associated with the complementarity conditions of the lower level fracture-
propagation problem, we introduce a penalty term to asymptotically enforce the irreversibility constraint.
To avoid any difficulties associated with non-differentiability, we consider a smooth penalty based upon
the fourth power of the feasibility violation, compare to [33]. Due to the penalization strategy, however,
we can no longer simply assume the phase-field to be in L∞ and hence the nonlinear coupling between
phase-field and displacement needs additional care. Utilizing results from [29] for damage models together
with a Stampacchia-type cutoff argument, we show that, indeed, the penalized fracture propagation
problem admits a solution.

We continue by analyzing the linearization of the regularized fracture model and show that the lin-
earized differential operator is Fredholm. This is utilized to provide first order necessary optimality
conditions for the nonlinear optimization problem and discuss QP-approximations to the former.

Throughout the paper, c denotes a generic constant, which is independent of the relevant quantities,
but may take a different value in each appearance, even in the same line. If we would like to emphasize
the dependence of such a constant on a particular value, we do so by introducing an appropriate index,
i.e., cε denotes a constant whose value depends on some parameter ε if the precise dependence is not
relevant for the argument.

The outline of this paper is as follows: In Section 2, we formulate the nonlinear optimization problem
for fracture propagation utilizing a phase-field ansatz, and introduce the regularization of the irreversibil-
ity condition for the growth by a penalty approach with parameter γ. Solvability of both the relaxed
fracture propagation problem as well as the optimization problem is discussed in Section 3. In Section 4,
we discuss the properties of the linearized relaxed phase-field model, and show that the linearization gives
rise to a Fredholm operator. This observation is then used to derive first order necessary conditions for
the relaxed nonlinear optimization problem, in Section 5, under a constraint qualification. In addition,
in Section 6, we show that quadratic approximations to the nonlinear optimization problem are always
well-posed and admit a unique solution that can be characterized by its first order necessary optimal-
ity conditions. Then, in Section 7, we present a numerical example indicating that indeed quadratic
approximations give rise to a convergent algorithm.

2. The Nonlinear Problem and its Linearization

2.1. The Phase-Field Model for Fracture Propagation. We consider a bounded domain Ω ⊂ R2.
Its boundary ∂Ω is decomposed into ΓD and ΓN satisfying

Hd−1(ΓD) 6= 0 and Hd−1(ΓN ) 6= 0

where Hd−1 is the d− 1-dimensional Hausdorff measure. With this we introduce the space of admissible
displacements H1

D(Ω;R2) := {v ∈ H1(Ω;R2) | v = 0 on ΓD}. We assume that Ω ∪ ΓN is regular in the
sense of Gröger, cf. [22], compare [24, Remark 1.6] for a characterization in the case Ω ⊂ R2 considered
here. By (·, ·), we denote the usual L2 scalar product and by ‖ · ‖ the corresponding norms.

Following Griffith’s criterion for brittle fracture, we suppose that the fracture propagation occurs when
the elastic energy restitution rate reaches its critical value Gc. If q is a force applied on ΓN , assuming
that the fracture C is not reaching ∂Ω, we define the following total energy

E(q;u, C) =
1

2
(Ce(u), e(u))Ω\C − (q, u)ΓN

+GcHd−1(C),(2.1)
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where u denotes the vector-valued displacement field, and C the elasticity tensor. For simplicity of the
presentation, we assume a linear stress-strain relationship

Ce(u) = σ(u) = 2µse(u) + λstre(u)I,

where µs and λs denote the Lamé coefficients, e(u) = 1
2 (∇u+∇uT ), and I the identity in d-dimensions.

Furthermore, we restrict ourselves to the consideration of homogeneous Dirichlet data for the displace-
ment u, for simplicity.

In the functional (2.1), the first term describes the bulk energy, the second term traction boundary
(Neumann) forces, and the final term the surface fracture energy.

Remark 2.1. Specific examples of traction forces q acting on Neumann boundary parts, including the
fracture, have been discussed in [39,41]. Therein, such integrals have been re-written into domain integrals
in order to combine them with other domain terms.

The energy functional is then minimized with respect to the kinematically admissible displacements
u and any fracture set satisfying the fracture growth condition; the latter one being discussed below.

To regularize the Hausdorff-measure, we follow [3, 4] and introduce a time-dependent auxiliary vari-
able (i.e., a phase-field for the fracture) ϕ, defined on Ω × (0, T ). Specifically, the fracture region is
characterized by ϕ = 0 and the non-fractured zone by ϕ = 1.

The regularized fracture functional reads

(2.2) Γε(ϕ) =
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2.

This regularization of Hd−1(C), in the sense of the Γ-limit when ε→ 0, was used in [12,13].
A key assumption in modeling contains the fact that the fracture can only grow, which is represented

by the following irreversibility constraint:

(2.3) ϕ(t2) ≤ ϕ(t1) ∀t1 ≤ t2.
In the following, we replace the energy functional (2.1) by a global constitutive dissipation functional for
a rate independent fracture process. To avoid the degeneracy of the elastic energy inside the fracture
({ϕ = 0}), we regularize by defining for some value κ� ε < 1

g(ϕ) = gκ(ϕ) := (1− κ)ϕ2 + κ.

We then obtain the regularized total energy [12,13]

(2.4) Eε(q;u, ϕ) =
1

2

(
g(ϕ)Ce(u), e(u)

)
− (q, u)ΓN

+GcΓε(ϕ).

To discretize in time, we introduce an equidistant partition

0 = t0 < t1 < . . . < tM = T,

with corresponding approximations (ui, ϕi)Mi=0. Then our irreversibility constraint is given as

ϕi ≤ ϕi−1.

To summarize our forward fracture propagation problem, we introduce the spaces

V := H1
D(Ω;R2)×H1(Ω), Q := L2(ΓN )

for the solution of the fracture problem and for the boundary data, respectively.
Summarizing our time discrete fracture problem for given q = (qi)Mi=1 ∈ QM and given (u0, ϕ0) ∈ V

with 0 ≤ ϕ0 ≤ 1 is to find u = (ui, ϕi)Mi=1 ∈ VM solving, for each i = 1, . . . ,M ,

(C)
min
u

Eε(q
i;ui, ϕi)

s.t. 0 ≤ ϕi ≤ ϕi−1 ≤ 1.

Indeed, the lower bound in C is not relevant, as it is satisfied by the solutions in any case, see, e.g., [3,4].
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2.2. The Optimization Problem and Further Regularizations of the Fracture. We would like
to consider the following model problem in fracture propagation for given (u0, ϕ0) ∈ V with 0 ≤ ϕ0 ≤ 1,
we wish to find (q,u) = (q, (u, ϕ)) ∈ (Q× V )M solving

(NLP)
min
q,u

J(q,u) :=
1

2

M∑
i=1

‖ui − uid‖2 +
α

2

M∑
i=1

‖qi‖2ΓN

s.t. ui solves (C) given the data qi, for each i = 1, . . . ,M ,

where ud ∈ (L2(Ω))M is a given desired displacement. We note that (NLP) does not depend explicitly
on the phase-field. Alternatively, the constraint in (NLP) could be relaxed by asking for satisfaction of
the first-order necessary conditions to (C), only.

The presence of inequality constraints in the lower-level problem (C) leads to several well known
problems, see, e.g., [37, 38]. Following a classical approach, see, e.g. [7], we regularize (C) to remove the
inequality constraints involved in the fracture-propagation problem. Since only the constraint ϕi ≤ ϕi−1

is relevant for the problem (C), we only consider this constraint in our regularization. We will see in
Section 3.1 that indeed neglecting the lower bound is justified.

To ensure sufficient differentiability of the regularization, we follow [33] obtaining for all time-steps
i = 1, . . . ,M

(Cγ) min
u

Eγε (qi, ϕi−1;ui, ϕi) := Eε(q
i;ui, ϕi) + γR(ϕi−1;ϕi)

with γ > 0 and

R(ϕi−1;ϕi) =
1

4
‖(ϕi − ϕi−1)+‖4L4 .

Formally, any minimizer of (Cγ) satisfies the Euler-Lagrange equations, that for any (v, ψ) ∈ V and
i = 1, . . . ,M ,

(ELγ)

(
g(ϕi)Ce(ui), e(v)

)
− (qi, v)ΓN

= 0,

Gcε(∇ϕi,∇ψ)− Gc
ε

(1− ϕi, ψ)

+(1− κ)(ϕiCe(ui) : e(ui), ψ)

+γ([(ϕi − ϕi−1)+]3, ψ) = 0.

However, since we relaxed the upper bound ϕi ≤ ϕi−1 it is no longer clear, if all terms above are well-
defined since it is not clear whether ϕi ∈ L∞(Ω). We will, positively, answer this question in the following
Section 3.

With this we can further relax our problem, and obtain the regularized nonlinear problem, given
(u0, ϕ0) ∈ V , 0 ≤ ϕ0 ≤ 1, to find (q,u) ∈ (Q× V )M solving

(NLPγ)
min
q,u

J(q,u)

s.t. (qi,ui) satisfy (ELγ) for each i = 1, . . . ,M .

3. Existence of Solutions to (NLPγ)

We proceed in two steps, starting by analyzing the lower level problem, before discussing the existence
of solutions to (NLPγ).

3.1. The Phase-Field Model (ELγ). Due to the fact, that we relaxed the constraint ϕi ≤ ϕi−1 by a
penalty approach, we can no longer assume ϕi ∈ L∞ as it is usually done in proving existence of solutions
to (C). The reason is that naively assuming minimal regularity asserted by the functional in (Cγ) the
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products of the variables, i.e., ϕ2Ce(u) : e(u), are not in L1. Hence following ideas of Stampacchia [28],
we will, temporarily, relax (Cγ) even further. Let b > 0 be an arbitrary given number and define

m = mb : R→ R; m(x) :=

{
x −b ≤ x ≤ b
P[−b−2,b+2](x) otherwise

where P[−b−2,b+2] is some smoothed projection onto [−b − 2, b + 2] of which the precise definition is
irrelevant as long as m ∈ C2 with 0 ≤ m′ ≤ 1 and m(R) ⊂ [−b − 2, b + 2]. With this, we define the
regularized coefficient function

gb(ϕ) = (1− κ)m
(
(ϕi)2

)
+ κ ∈ [κ, b+ 2].

We modify the cost functional in (Cγ) to include the cutoff function. Consequently, we consider the
following family of problems

(Cγ,b)
min
ui

Eγ,bε (qi, ϕi−1;ui, ϕi) :=
1

2

(
gb(ϕ)Ce(ui), e(ui)

)
− (qi, ui)ΓN

+GcΓε(ϕ
i) + γR(ϕi−1;ϕi),

at each time-point i = 1, . . . ,M The idea of Stampacchia’s method, in essence, is to prove that (Cγ,b)
has all desired properties and, moreover, that for suitable b ∈ R the solutions of (Cγ,b) and (Cγ) coincide
and thus our original problem inherits, among other properties, the boundedness of ϕi in L∞. Let us
therefore start by discussing (Cγ,b), first.

Lemma 3.1. For any i = 1, . . . ,M it holds.
(1) Given qi ∈ L2(ΓN ) and ϕi−1 ∈ L2(Ω), (Cγ,b) has at least one solution ūi.
(2) Further, any (local) minimizer ūi of (Cγ,b) solves for all (v, ψ) ∈ V

(ELγ,b)

(
gb(ϕ

i)Ce(ui), e(v)
)
− (qi, v)ΓN

= 0

Gcε(∇ϕi,∇ψ) + (1− κ)(m′((ϕi)2)ϕiCe(ui) : e(ui), ψ)

−Gc
ε

(1− ϕi, ψ) + γ([(ϕi − ϕi−1)+]3, ψ) = 0.

(3) Finally, any solution ui = (ui, ϕi) ∈ V to (ELγ,b) satisfies
(a) Assuming ϕi−1 ≥ 0 a.e. it follows ϕi ≥ 0 a.e..
(b) There exists a constant cb,κ depending on b and κ (but not on ui and p > 2), such that

‖ui‖1,p ≤ cb,κ‖qi‖.

(c) Assuming ϕi−1 ≥ 0 a.e., then

‖∇ϕi‖2 +
‖ϕi‖2

2ε2
≤ |Ω|

2

2ε2
.

(d) Under the conditions above, it holds

0 ≤ ϕi ≤ 1.

Proof. (1) For any given ϕ ∈ H1(Ω) it is κ ≤ gb(ϕ) ≤ b+ 2 and hence, by uniform convexity, there
exists a unique minimizer u = u(ϕ) of the elastic energy

u 7→ 1

2
(gb(ϕ)Ce(u), e(u))− (qi, u)ΓN

.

It is thus sufficient to consider the reduced energy, compare, e.g., [29]

min
ϕ
Eγε (ϕ) := Eγε (qi, ϕi−1;u(ϕ), ϕ).
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Utilizing the results of [24, Theorem 1.1], we obtain, for any ϕ ∈ H1(Ω), the existence of p > 2
such that u(ϕ) ∈W 1,p(Ω;R2) ∩H1

D(Ω;R2) and it holds

‖u(ϕ)‖1,p ≤ cb,κ‖qi‖.

Noticing that gb satisfies the assumption [29, (2.10)] and the nonnegative penalty term R(ϕi−1, ϕ)
does not influence the statement, we can apply [29, Lemma 2.1] to see that the reduced energy
satisfies

−∞ < c ≤ Eγε (ϕ)→∞ (‖ϕ‖1,2 →∞).

Hence there exists ϕi ∈ H1(Ω) and an H1-weakly convergent sequence ϕk ⇀ ϕi with

Eγε (ϕk)→ inf
ϕ
Eγε (ϕ) > −∞.

By the compact embedding H1(Ω) ⊂ L4(Ω), we can w.l.o.g. assume that ϕk → ϕi strongly in
L4(Ω), and hence convergence of γR(ϕi−1;ϕk)→ γR(ϕi−1;ϕi) follows. By [29, Corollary 2.1] it
follows that

ϕ 7→ Eγε (ϕ)− γR(ϕi−1;ϕk)

is weakly lower semi-continuous and hence

inf
ϕ
Eγε (ϕ) ≤ Eγε (ϕi) ≤ lim

k→∞
Eγε (ϕk) = inf

ϕ
Eγε (ϕ).

This shows the assertion setting ui = (u(ϕi), ϕi).
(2) We notice that for any (v, ψ) ∈ V the mapping

S : R→ R; s 7→ Eγε (qi, ϕi−1;ui + s(v, ψ))

is well defined, differentiable and has a local minimizer at s = 0. This shows the assertion by
consideration of the necessary optimality condition for a minimizer of S, i.e., S′(0) = 0.

(3) (a) To show non-negativity of ϕi for the solutions of (ELγ,b), we need to test the second equation
in (ELγ,b) with ψ = min(0, ϕi). We define the set

Ω− := {x ∈ Ω |ϕi(x) < 0}

and obtain from (ELγ,b)

0 = Gcε‖∇ϕi‖2Ω− +
Gc
ε
‖ϕi‖2Ω− −

Gc
ε

(1, ϕi)Ω−

+ (1− κ)(m′((ϕi)2)(ϕi)2Ce(ui), e(ui))Ω−

+ γ([(ϕi − ϕi−1)+]3, ϕi)Ω− .

The first two terms are obviously non negative, and positive, if |Ω−| > 0. The third
term satisfies −(1, ϕi)Ω− ≥ 0 by definition of Ω−. The fourth term is nonnegative by our
assumption on m′ and C. For the fifth (i.e., the final term), we notice, that by assumption
on ϕi−1

ϕi ≤ 0 ≤ ϕi−1 on Ω−

and hence
([(ϕi − ϕi−1)+]3, ϕi)Ω− = 0.

This shows |Ω−| = 0 and hence the assertion ϕi ≥ 0 a.e.
(b) As in the proof of 1. of this Lemma, the equation

(gb(ϕ)Ce(ui), e(v)) = (qi, v)ΓN

implies the assertion utilizing [24, Proposition 1.2] noting that the estimates only depend
on the lower and upper bounds on gb and not the distribution of the intermediate values.



Optimization of Fracture Propagation 7

(c) We start by bounding the H1 norm of ϕi. To this end, we test (ELγ,b) with ψ = ϕi and
obtain

Gcε‖∇ϕi‖2+
Gc
ε
‖ϕi‖2 + γ([(ϕi − ϕi−1)+]3, ϕi)

+ (1− κ)(m′((ϕi)2)(ϕi)2Ce(ui), e(ui))

=
Gc
ε

(1, ϕi)

≤ Gc
2ε
|Ω|2 +

Gc
2ε
‖ϕi‖2.

Since all terms on the left are non negative, note that ϕi ≥ 0, we deduce

‖∇ϕi‖2 +
‖ϕi‖2

2ε2
≤ |Ω|

2

2ε2
.

(d) To see the assertion, we test (ELγ,b) with ψ = (ϕi − 1)+ = max(0, ϕi − 1) and obtain

0 = Gvε‖∇(ϕi − 1)+‖2 +
Gc
ε
‖(ϕi − 1)+‖2 + γ([(ϕi − ϕi−1)+]3, (ϕi − 1)+)

+ (1− κ)(m′((ϕi)2)ϕiCe(ui) : e(ui), (ϕi − 1)+).

Noticing that all summands are non negative, the assertion follows analogously to part (a).
�

Now, choosing b ≥ 1 in the last Lemma allows to transfer these results to (Cγ).

Corollary 3.2. (1) Given qi ∈ L2(ΓN ) and ϕn−1 ∈ L2(Ω) with ϕi−1 ≥ 0 there exists at least one
solution ui of (ELγ).

(2) Further, any solution ui = (ui, ϕi) to (ELγ) satisfies
(a) 0 ≤ ϕi ≤ 1 a.e.
(b) There exists a constant cκ depending on κ and p > 2, such that

‖ui‖1,p ≤ cκ‖qi‖.

(c) It holds

‖∇ϕi‖2 +
‖ϕi‖2

2ε2
≤ |Ω|

2

2ε2
.

Proof. (1) The existence of at least one solution follows by Lemma 3.1 taking b ≥ 1 since then
gb(ϕ

i) = g(ϕi) and m′((ϕi)2) = 1 for any solution to (ELγ,b) and hence any such solution
solves (ELγ) as well.

(2) (a) The proof of Lemma 3.1 3.(a) and 3.(d) can be repeated to yield the desired bounds 0 ≤
ϕi ≤ 1.

(b) The proof of Lemma 3.1 3.(b) can be applied, noticing that the constant depends on the
upper and lower bound of the coefficient, i.e., κ ≤ g(ϕ) ≤ 1, only.

(c) The proof of Lemma 3.1 3.(c) carries over to the present setting as well.
�

3.2. The Problem (NLPγ). We can now finalize the existence of solutions to (NLPγ).

Theorem 3.3. There exists at least one global minimizer (q,u) ∈ (Q× V )M to (NLPγ).

Proof. The proof is almost straight forward. Since J(q,u) ≥ 0 there exists a minimizing sequence
(qk,uk) satisfying (ELγ), i.e., J(qk,uk) → infq,u J(q,u). The corresponding control qk is bounded in
QM and hence there exists a weakly convergent subsequence, w.l.o.g denoted by qk, with limit q∞.
By Corollary 3.2 2.(b) and 2.(c), the sequence (uk, ϕk) is bounded in (W 1,p(Ω;R2) × H1(Ω))M and
consequently w.l.o.g. uk ⇀ u∞ in W 1,p(Ω;R2)M and ϕk ⇀ ϕ∞ in H1(Ω)M . To see that the limit
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satisfies the elasticity equation in (ELγ), note that due to the compact embedding H1(Ω) ⊂ Lp(Ω) for
any p <∞

g(ϕik)Ce(uik) ⇀ g(ϕi∞)Ce(ui∞)

in L2(Ω;R2×2) holds, since g(ϕik) converges strongly. To see that the limiting phase-field ϕ∞ satisfies
the equation, we notice, that by Corollary 3.2 the phase-field satisfies ϕik ≤ 1 and hence we can also
consider (ELγ,b), because it coincides with (ELγ) in the relevant points but satisfies the conditions in [29].
Thus by [29, Corollary 2.1] it is

Gcε(∇ϕik,∇·) + (1− κ)(ϕikCe(uik) : e(uik), ·)− Gc
ε

(1− ϕik, ·)

⇀ Gcε(∇ϕi∞,∇·) + (1− κ)(ϕi∞Ce(ui∞) : e(ui∞), ·)− Gc
ε

(1− ϕi∞, ·)

weakly in H1(Ω)∗. For the remaining term γ[(ϕik − ϕ
i−1
k )+]3 the compact embedding H1(Ω) ⊂ L6(Ω)

gives convergence in L2 and consequently the pair u∞ = (u∞, ϕ∞) solves (ELγ).
Hence (q∞,u∞) is feasible for (NLPγ). Weak lower semicontinuity of J shows that

J(q∞,u∞) ≤ inf
q,u

J(q,u)

and thus the assertion is shown, setting (q, u) = (q∞, u∞). �

Corollary 3.4. Any minimizer (q,u) of (NLPγ) satisfies the additional regularity u ∈ (W 1,p(Ω;R2)×
L∞(Ω))M . More precisely for any i = 1, . . .M it holds 0 ≤ ϕi ≤ 1 and ‖ui‖1,p ≤ cκ‖qi‖.

Proof. This is an immediate consequence of Corollary 3.2. �

4. The Linearized Problem

In order to discuss first order necessary optimality conditions, as well as the potential approximation
of (NLPγ) by a sequence of linear-quadratic problems, let (qk,uk) = (qk, uk, ϕk) ∈ (Q × V )M be a
given point. Considering the regularity of solutions to (ELγ), we assume qk ∈ QM , and (uk, ϕk) ∈
(V ∩ (W 1,p(Ω;R2)× L∞(Ω)))M .

The linearized problem to (ELγ) consists, for given q ∈ QM and ϕ0 := 0, of finding u = (u, ϕ) ∈ VM
such that for any i = 1, . . . ,M and (v, ψ) ∈ V

(ELγlin)

(
g(ϕik)Ce(ui), e(v)

)
+2(1− κ)(ϕikCe(uik)ϕi, e(v)) = (qi, v)ΓN

Gcε(∇ϕi,∇ψ) +
Gc
ε

(ϕi, ψ)

+(1− κ)(ϕiCe(uik) : e(uik), ψ)

+3γ([(ϕik − ϕi−1
k )+]2ϕi, ψ)

+2(1− κ)(ϕikCe(uik) : e(ui), ψ) = 3γ([(ϕik − ϕi−1
k )+]2ϕi−1, ψ).

Existence of Solutions to (ELγlin). We now discuss the properties of the linearized equation (ELγlin)

Lemma 4.1. For any given (uk, ϕk) ∈ (V ∩ (W 1,p(Ω;R2) × L∞(Ω)))M with p > 2 and qk ∈ QM the
linear operators Ai : V → V ∗ corresponding to (ELγlin) defined by

〈Ai(ui, ϕi), (v, ψ)〉V,V ∗ := ai(u
i, ϕi; v, ψ)

:=
(
g(ϕik)Ce(ui), e(v)

)
+ 2(1− κ)(ϕikCe(uik)ϕi, e(v))

+Gcε(∇ϕi,∇ψ) +
Gc
ε

(ϕi, ψ) + (1− κ)(ϕiCe(uik) : e(uik), ψ)

+ 3γ([(ϕik − ϕi−1
k )+]2ϕi, ψ) + 2(1− κ)(ϕikCe(uik) : e(ui), ψ)
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are Fredholm of index zero.

Proof. Since p > 2, we can find r ∈ (2,∞) such that 1
p + 1

2 + 1
r = 1. By embedding theorems, there

exists 0 < s < 1, such that Hs(Ω) ⊂ Lr(Ω) compactly. Then continuity of ai on V × V follows

ai(u
i, ϕi; v, ψ) ≤ c‖ui‖1,2‖v‖1,2 + c‖ϕi‖0,r‖v‖1,2

+ c‖ϕi‖1,2‖ψ‖1,2 + c‖ϕi‖‖ψ‖+ c‖ϕi‖0,r‖ψ‖0,r
+ cγ‖ϕi‖‖ψ‖+ c‖ui‖1,2‖ψ‖0,r

≤ c
(
‖ui‖1,2‖v‖1,2 + ‖ϕi‖1,2‖v‖1,2 + ‖ϕi‖1,2‖ψ‖1,2 + ‖ui‖1,2‖ψ‖1,2

)
≤ c‖(ui, ϕi)‖V ‖(v, ψ)‖V ,

with generic constants c depending on (uik, ϕ
i
k) ∈ W 1,p(Ω;R2) × L∞(Ω). To derive a lower bound, we

notice that the only possibly non-positive terms are the two starting with 2(1−κ) and we deduce, using
Korn’s inequality

a(ui, ϕi;ui, ϕi) ≥ c‖ui‖21,2 + ‖ϕi‖21,2 − c‖ϕi‖0,r‖ui‖1,2
≥ c‖ui‖21,2 + ‖ϕi‖21,2 − c‖ϕi‖2s,2.

Consequently ai(·, ·) + c(·, ·)s,2 is coercive on V × V and thus invertible, and in particular Fredholm
of index zero, by the Lax-Milgram lemma. Since H1(Ω) ⊂ Hs(Ω) is compact, we deduce that the
mapping Ai : V → V ∗ given by (ui, ϕi) 7→ Ai(u

i, ϕi) = ai(u
i, ϕi; ·) is Fredholm of index zero as well, see,

e.g., [46, Theorem 12.8]. �

Lemma 4.2. Under the assumptions of Lemma 4.1, any element (ui, ϕi) ∈ ker(Ai) ⊂ V satisfies the
additional regularity (ui, ϕi) ∈ V ∩ (W 1,p(Ω;R2)× L∞(Ω)).

Proof. Consider (ui, ϕi) ∈ ker(Ai), i.e.,

ai(u
i, ϕi; v, ψ) = 0 ∀(v, ψ) ∈ V.

First of all, we notice, that the linearized phase-field ϕi satisfies

Gcε(∇ϕi,∇ψ) +
Gc
ε

(ϕi, ψ)

= −(1− κ)(ϕiCe(uik) : e(uik), ψ)− 3γ([(ϕik − ϕi−1
k )+]2ϕi, ψ)

− 2(1− κ)(ϕikCe(uik) : e(ui), ψ).

With the definition of r as in the proof of Lemma 4.1, it is ϕi ∈ Lr(Ω) and 1
p + 1

r = 1
2 . Let r′ be given

such that 1 = 1
r + 1

r′ = 1
r + ( 1

r + 2
p ), then 1 < r′ < 2. As a consequence, the right hand side of the

equation above is an element in Lr
′
(Ω). To see this, we calculate

‖ϕiCe(uik) : e(uik)‖0,r′ ≤ c‖ϕi‖0,r‖e(uik)‖20,p,
‖[(ϕik − ϕi−1

k )+]2ϕi‖0,r′ ≤ c‖[(ϕik − ϕi−1
k )+]2ϕi‖0,r ≤ c‖(ϕik − ϕi−1

k )+‖20,∞‖ϕi‖0,r,
‖ϕikCe(uik) : e(ui)‖0,r′ ≤ c‖ϕik‖0,∞‖e(uik)‖0,p‖e(ui)‖.

Utilizing elliptic regularity it follows that ϕi ∈ H1(Ω) ∩ L∞(Ω).
Now, we can continue to derive the improved regularity of ui. To this end, we notice, that ui solves(

g(ϕik)Ce(ui), e(v)
)

= −2(1− κ)(ϕikCe(uik)ϕi, e(v)).

The right hand side satisfies

‖ϕikCe(uik)ϕi‖0,p ≤ c‖ϕik‖0,∞‖uik‖1,p‖ϕi‖0,∞
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and thus (ϕikCe(uik)ϕ, e(·)) defines an element in W−1,p(Ω;R2) =
(
W 1,p′(Ω;R2)

)∗
, utilizing again [24,

Theorem 1.1], we conclude that u ∈W 1,p(Ω;R2). �

Remark 4.1. Utilizing the above regularity provided by Lemma 4.2, we can now define the scalar product
(·, ·)C = (C·, ·) and corresponding norm ‖ · ‖C. The above regularity shows, that the norms ‖ϕie(uik)‖C
and ‖ϕike(ui)‖C are finite for all (ui, ϕi) ∈ kerAi. Consequently, we can now provide an improved lower
bound utilizing the parallelogram identity for the above scalar product

0 = a(ui, ϕi;ui, ϕi)

= (1− κ)((ϕik)2Ce(ui), e(ui)) + κ(Ce(ui), e(ui)) + 2(1− κ)(ϕikCe(uik)ϕi, e(ui))

+Gcε(∇ϕi,∇ϕi) +
Gc
ε

(ϕi, ϕi) + (1− κ)(ϕiCe(uik) : e(uik), ϕi)

+ 3γ([(ϕik − ϕi−1
k )+]2ϕi, ϕi) + 2(1− κ)(ϕikCe(uik) : e(ui), ϕi)

≥ κ‖e(ui)‖2C + (1− κ)‖ϕike(ui)‖2C + 2(1− κ)(ϕike(u
i), ϕie(uik))C

+ c‖ϕi‖21,2 + (1− κ)‖ϕie(uik)‖2C + 2(1− κ)(ϕike(u
i), ϕie(uik))C

≥ κ‖e(ui)‖2C + c‖ϕi‖21,2 + (1− κ)‖ϕike(ui) + ϕie(uik)‖2C + 2(1− κ)(ϕike(u
i), ϕie(uik))C.

Remark 4.2. From the previous Remark 4.1, we immediately assert, that for sufficiently small ‖uik‖1,p,
‖ϕik‖0,∞, the mixed term can be absorbed into the squared norms and, consequently, for such (uk, ϕk),
we have kerAi = {0}. Indeed, this would already be clear from the proof of Lemma 4.1, but the condition
provided by Remark 4.1 is tighter.

Corollary 4.3. For any given (uk, ϕk) ∈ (V ∩ (W 1,p(Ω;R2) × L∞(Ω)))M and qk ∈ QM the linear
operators A : VM → (V ∗)M defined by 

A1

B2 A2

. . . . . .
BM AM


with Ai : V → V ∗ as in Lemma 4.1 and Bi = 3γ[(ϕik − ϕ

i−1
k )+]2, are Fredholm of index zero.

Proof. By Lemma 4.1 the diagonal is Fredholm, and the off-diagonal Bi are compact as a mapping
V → V ∗. Thus the assertion follows by [46, Theorem 12.8]. �

5. First Order Necessary Conditions for (NLPγ)

We can now state the necessary optimality conditions for (NLPγ).

Theorem 5.1. Let (q̄, ū) ∈ (Q × V )M be a minimizer of (NLPγ), such that kerA = {0}, with A as
defined in Corollary 4.3 in the point (qk,uk) = (q̄, ū). Then there exists z̄ = (z̄, ζ̄) ∈ VM such that

(q̄, ū) satisfy (ELγ)

〈A∗z̄, ϕ〉 =

M∑
i=1

(ūi − uid, ϕi) ∀ϕ ∈ VM

α

M∑
i=1

(q̄i, δqi)ΓN
= −

M∑
i=1

(z̄i, δqi)ΓN
∀δq ∈ QM .

Proof. By Corollary 4.3 A is Fredholm, since kerA = {0} A is an isomorphism, and so is its dual A∗.
Consequently, the linearized constraint (ELγlin) is surjective as a mapping (Q × V )M → (V ∗)M and
the existence of z̄ follows by standard results on the existence of Lagrange multipliers, see, e.g., [47,
Theorem 4.1.(a)]. �
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6. Quadratic Approximations to (NLPγ)

We aim to approximate (NLPγ) by a linear-quadratic problem in a given point (qk,uk) = (qk, uk, ϕk).
Considering the regularity of solutions to (ELγ), we assume qk ∈ QM , and (uk, ϕk) ∈ (V ∩(W 1,p(Ω;R2)×
L∞(Ω)))M .

In order to keep the notation short, we introduce the (compact) operator B : QM → (V ∗)M for the
control action as follows

(6.1) 〈Bq, (v, ψ)〉(V ∗)M ,VM :=

M∑
i=1

(qi, vi)ΓN
.

By standard reformulations, we obtain the quadratic problem, up to a fixed additive constant in the
cost functional,

(QPγ)
min
(q,u)

Jlin(q,u) :=
1

2

M∑
i=1

‖ui − (uid − uik)‖2 +
α

2

M∑
i=1

‖qi + qik‖2ΓN

s.t. (q,u) satisfy (ELγlin), i.e., Au = Bq,

where A is given in Corollary 4.3 and B in (6.1).

6.1. Existence of Solutions to (QPγ).

Theorem 6.1. For any given (uk, ϕk) ∈ (V ∩(W 1,p(Ω;R2)×L∞(Ω)))M and qk ∈ QM the problem (QPγ)
has a unique solution (q,u) ∈ QM × VM .

Proof. It is immediate that, a pair (q,u) satisfies (ELγlin) if and only if

Au = Bq in (V ∗)M

with A as defined in Corollary 4.3 and B as in (6.1). Now, by Corollary 4.3, A is Fredholm and
consequently, see, e.g., [46, Theorem 12.2], has closed range. Moreover, since the codimension of the
image of A is finite the intersection A(VM ) ∩ B(QM ) is non empty. Clearly Jlin is bounded below, and
we can pick a minimizing sequence (q(k),u(k)) satisfying Au = Bq. Due to the coercivity of Jlin the
sequence is bounded and, possibly selecting a subsequence, there is a weak limit q(k) ⇀ q(∞) in QM . By
compactness, Bq(k) → Bq(∞) in (V ∗)M .

Since A is Fredholm, dim kerA <∞ and consequently, we can decompose VM = kerA⊕ VM/ kerA.
Correspondingly, we split the sequence u(k) = uker

(k) +u0
(k). Then A induces an isomorphism as a mapping

A : VM/ kerA → A(VM ) and consequently

u0
(k) = A−1Bq(k) → A−1Bq(∞) = u0

(∞).

Moreover, since Jlin is bounded along its minimizing sequence, ‖uker
(k)‖ is bounded, and since kerA is finite

dimensional, possibly selecting a subsequence, there exists a limit uker
(k) → uker

(∞) ∈ kerA. By continuity
of A it is

Au(∞) = Bq(∞),

and by weak lower semicontinuity

Jlin(q(∞),u(∞)) ≤ inf
(q,u)

Jlin(q,u).

Uniqueness follows, since Jlin is strictly convex on QM × VM . �
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6.2. Necessary (& Sufficient) Optimality Conditions. To conclude the discussion of the quadratic
approximations, we note that we can give necessary, and due to convexity also sufficient, first order
optimality conditions.

Theorem 6.2. For any given (uk, ϕk) ∈ (V ∩ (W 1,p(Ω;R2) × L∞(Ω)))M and qk ∈ QM let (q,u) ∈
QM × VM be a solution to (QPγ). Then there exists a Lagrange multiplier, z = (z, ζ) ∈ VM , such that
the system

(KKTγ)

Au = Bq in (V ∗)M ,

A∗z = u− (ud − uk) in (V ∗)M ,

α(q − qk) + z = 0 on ΓN

is satisfied where A is given in Corollary 4.3, A∗ denotes its adjoint, B is given by (6.1), and the,
compact, embedding (L2)M ⊂ (V ∗)M is used without special notation for the right hand side of the
adjoint equation. Due to the convexity of (QPγ), any triplet (q,u, z) ∈ QM ×VM ×VM solving (KKTγ)
gives rise to a solution of (QPγ).

Proof. We notice that the equality constraint in (QPγ) is linear, and consequently a constraint quali-
fication is given and the result is a consequence of Farkas’-Lemma, see, e.g., [16, Theorem 10] for its
generalization to infinite dimensions. �

7. Numerical Illustration

In this final section, we discuss a prototype test in order to substantiate our theoretical advancements.
Moreover, our findings indicate that the QP-approximations discussed above can be used to obtain a
(locally) fast convergent Newton (SQP) Algorithm.

The setup is to employ a control q on the top boundary of a two-dimensional square domain, acting
in normal direction only, in order to steer the solution towards a manufactured solution uD defined in
the entire domain. The computations are performed with DOpElib [19, 20] utilizing the deal.II finite
element library [5, 6].

The domain is given by Ω := (−1, 1)2 in which a horizontal fracture is prescribed. The initial value
for ϕ0 is taken such that ϕ0 = 0 on (−0.1−h, 0.1 +h)× (−h, h) ⊂ Ω (see Figure 1), where h denotes the
diameter of the elements. The boundary is divided into three parts ∂Ω := ΓN ∪ΓD ∪Γfree corresponding
to the control boundary ΓN , the Dirichlet boundary ΓD, and the rest, where natural boundary conditions
for the displacement are attained. These boundary parts are given by

ΓN = {(x, 1) | − 1 ≤ x ≤ 1} and Γfree = {(x, y) |x ∈ {±1};−1 ≤ y ≤ 1}.

On ΓD, we prescribe the Dirichlet values u = 0.
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Figure 1. Geometry and mesh (left) and initial fracture (in red; right figure).

The cost functional is given by

J(q,u) :=
1

2

M∑
i=1

‖ui − uid‖2 +
α

2
‖q + qd‖2ΓN

s.t. (q,u) satisfying (ELγ),

where uid = 0.001(y + 1) for all i = 1, . . . ,M , α = 10−10 and a control acting on ΓN but being the same
in all time-steps, i.e, qi = q for all i = 1, . . . ,M , and qd ≡ 50. Moreover, u0 = (0;ϕ0) with ϕ0 as depicted
in Figure 1.

Furthermore, the phase-field regularization parameter is chosen as ε = 2h = 0.088 where h = 0.0442
is the element diameter of the mesh for the finite element discretization used for the computations. The
bulk regularization parameter is κ = 10−10, the penalization parameter is γ = 108, the fracture energy
release rate is Gc = 1.0, Young’s modulus is E = 106 and Poisson’s ratio is ν = 0.2. The initial mesh
is six times globally refined as shown in Figure 1 and 5 loading steps, i.e., M = 5, are performed. The
spatial discretization is done using standard Q1 finite elements for all unknowns.

Our findings are summarized in the following. The initial value of the cost functional is Jinitial =
1.247× 10−5 that is obtained by employing the initial control q ≡ 10 on ΓN . In this particular setting,
the initial residual of the Newton iteration is small; namely 7.46×10−9. This starting residual is taken as
1 in the relative residual, which is plotted in Table 1. Furthermore, Table 1 shows the iteration history of
the Newton steps performed during the solution of the optimization problem. At each step, the Newton
residual, the cost functional J and qmax = maxΓN

|q| are provided. We observe that the algorithm is
convergent, the convergence slows down to a linear rate in the later iterations as it has to be expected
since the QP-subproblems are solved only up to an accuracy proportional to the norm of the optimization
residual, and consequently only very few, i.e., two, iterations of the linear solver are performed in these
Newton steps.
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Table 1. Results of the nonlinear optimization iterations.
Newton iter. N-linear iter. Newton residual (rel.) J [×10−5] qmax on ΓN

0 - 1.00 × 100 1.2470 10

1 14 3.57 × 10−2 1.0487 87

2 11 1.23 × 10−3 1.0469 84

3 2 3.94 × 10−4 1.0469 84

4 2 1.27 × 10−4 1.0469 84

Illustrations of the solutions are provided in the Figures 2–4 displaying the primal and adjoint solutions.
Here, expected behavior is shown: the largest y-displacement is on ΓN . However, the linear growth of
this displacement can not be achieved, in contrast to linear elasticity alone, due to the presence of the
fracture. It should be noted, that the color-scale in 3 and 4 is adjusted to the size of the displacement in
the last Newton step, as it is visible from these pictures the initial displacement is severely smaller and
almost invisible in this scale.

Figure 2. Final fracture (in red) and corresponding adjoint phase-field after four New-
ton iterations at M = 5.



Optimization of Fracture Propagation 15

Figure 3. Initial x-displacement field and final x-displacement field after four Newton
iterations at M = 5.

Figure 4. Initial y-displacement field and final y-displacement field after four Newton
iterations at M = 5.
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